Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные свойства живой материи




Биологический уровень организации материи очень сложен, его нельзя свести к закономерностям других естественных наук, и принципы живого нельзя вывести из принципов физики и химии. Существует несколько подходов к определению живого вещества.
1. Сторонники витализма — учения, основанного на при
знании наличия в организмах управляющей ими нематериальной
сверхъестественной силы («души»), считают жизнь явлением уни
кальным, которое невозможно объяснить физико-химическими
процессами. В основе такого взгляда — удивительная сложность
строения и целесообразность поведения живых организмов.
От древности идет представление об энтехелии, одушевляющей «грубую материю тела» и обеспечивающей организмам целенаправленное поведение. Древние египтяне и греки предполагали наличие нескольких «одушевляющих» начал, часть из которых продолжает существовать и после смерти тела. Долгое время люди считали, что эти начала обеспечивают «грубой материи тела» память, мышление и целенаправленные действия. Гомеостаз — одна из целенаправленных реакций, если считать поддержание механизма жизнедеятельности целью, тогда как внешние и внутренние силы этому противодействуют. Разные способы поддержания жизни у разных живых существ — это разные механизмы гомеостаза. Эволюция этих механизмов, направленная на большую независимость жизни от внешних условий, — это развитие организмов. Но объяснения особенностей живого через поиск цели остались достоянием истории науки, они равноценны объяснению: «Луна светит, чтобы освещать мне путь» или «Растения и животные существуют для того, чтобы обеспечивать нас пищей».
2. Представители редукционного подхода считают воз
можным использовать законы физики и химии для объяснения
процессов жизнедеятельности. Было проверено многократно, что
эти законы не нарушаются в биологических системах, но это не
означает, что все свойства живого могут быть ими описаны. Они,
наоборот, отрицают целенаправленность строения и поведения.
И гомеостаз — основу жизни — они объясняют на основе законов неживой природы. Так, терморегуляция теплокровных осуществляется по принципу обратной связи (выделение пота при по-
421

вышении температуры). Аналогом такого поведения считают управляемое радаром зенитное орудие. Согласно Н. Винеру, определенный тип целенаправленной деятельности обеспечивается контролируемым использованием и переработкой информации, поэтому не так важны детали этих перерабатывающих устройств. Сходство между человеком и машиной в этом отношении было отражено и в названии книги Винера «Кибернетика, или управление и связь в животном и машине» (1949), существенно изменившей мировоззрение.
Сторонники этого подхода изучают клеточное строение и функционирование организмов. Бактерии и синезеленые водоросли относят к протокариотам (от греч. protos — первый), так как их клетки не имеют оформленного ядра, а ДНК находится прямо в цитоплазме и не окружена мембраной. Зеленые растения, грибы, слизевики и животные относятся к группе эукариот (от греч. ей... — хорошо, полностью) и имеют ядро, т. е. их генетический материал окружен двойной мембраной и образует определенную клеточную структуру. Первые эукариоты, по-видимому, произошли от протокариот около 3 млрд лет назад, или в конце докембрийско-го периода.
Диаметр клетки бактерий около 10-6 м, поэтому их часто называют микробами. Они освоили самые разные среды обитания и широкий диапазон температур. Численность бактерий даже в очень небольшом объеме вещества очень высокая, например, в 1 г парного молока их более 3000 млн. Бактерии, как и грибы, разрушают органическое вещество и участвуют в круговороте веществ, играя особую роль в биосфере. Они важны для плодородия почв и в очистных сооружениях, участвуют в процессе пищеварения, применяются в производстве антибиотиков, используются с различными целями в биотехнологии и генной инженерии. ДНК бактерий представлена одиночными кольцевыми молекулами длиной около 10-3 м, каждая из молекул состоит примерно из 5 млн пар нуклеотидов, или нескольких тысяч генов (в 500 раз меньше, чем у человека).
3. Живая клетка — это элементарная организованная часть живой материи и сложная высокоупорядоченная система. Опытным путем установлено, что в ней непрерывно совершаются синтез крупных молекул из мелких и простых — анаболические (от греч. anabole— подъем) реакции, на которые затрачивается энергия, и их распад — катаболические (от греч. katabole— сбрасывание вниз) реакции. Совокупность этих реакций в клетке и есть процесс метаболизма. Для его поддержания необходим непрерывный приток энергии, и для живого более важна химическая форма энергии. Биологи часто выделяют основные наблюдаемые свойства, отличающие живое от неживого и отражающие специфику биологической формы движения материи.
422

Самовоспроизведение (репродукция) может производиться многократно, а генетическая информация о нем закодирована в молекулах ДНК. На молекулярном уровне самовоспроизведение происходит на основе матричного синтеза ДНК, программирующей синтез белков, которые определяют специфику организма, на других уровнях — огромным разнообразием форм и механизмов, вплоть до образования клеток. Именно разнообразие поддерживает существование видов, определяет специфику жизни.
Иерархичность организации отражает возможности системного подхода к пониманию строения и жизнедеятельности. Клетки как единицы организации специфически организованы в ткани, ткани — в органы, органы — в системы органов. Организмы сорганизованы в популяции, популяции — в биоценозы, а биоценозы — в биогеоценозы, являющиеся элементарными единицами биосферы.
На молекулярном уровне упорядоченность структуры приводит к образованию молекулярных и надмолекулярных структур, отличающихся упорядоченностью в пространстве и во времени. В отличие от объектов неживой природы упорядоченность живого происходит за счет внешней среды, в которой уровень упорядоченности снижается. И процессы, ведущие к упорядоченности живого, идут с локальным уменьшением энтропии. Живые системы в развитии способны к самоорганизации, упорядочиванию структур, росту разнообразия.
Регуляция процессов осуществляется в химических реакциях при помощи механизма обратной связи. В регуляции активности клеток принимают участие гормоны, обеспечивающие химическую регуляцию. Внутри клеток реакции синтеза и распада идут с участием ферментов, синтезируемых внутри самих клеток.
Рост организмов происходит путем увеличения их массы за счет размеров и числа клеток. Развитие представлено индивидуальным (онтогенезом) и историческим (филогенезом) развитием, и одинаково важны наследственность и изменчивость. Развитие, сопутствующее росту, проявляется в усложнении структуры и функций. В онтогенезе формируются признаки в процессе взаимодействия генотипа и среды. В филогенезе появляется большое разнообразие организмов и целесообразность. Эти процессы регулируются и подвержены генетическому контролю. В отличие от объектов неживой природы — кристаллов, которые растут, присоединяя новое вещество к поверхности, живые организмы растут за счет питания изнутри, причем живая протоплазма образуется при ассимиляции питательных веществ. Выживание вида или его бессмертие обеспечивается сохранением признаков родителей у потомства, возникшего путем размножения. Передаваемая следующему поколению информация закодирована в молекулах ДНК и РНК.
423

Гомеостаз (от греч. homoios — подобный, одинаковый + + stasis— неподвижность, состояние) заключается в том, что живые организмы, обитающие в непрерывно меняющихся внешних условиях, поддерживают постоянство своего химического состава и интенсивность течения всех физиологических процессов с помощью авторегуляционных механизмов, при этом сохраняется необходимая ритмичность в периодических изменениях интенсивности.
Обмен веществ и энергии обеспечивает гомеостаз и является условием поддержания жизни организма. Первоначально из внешней среды получается энергия в форме солнечного света, затем химическая энергия преобразуется в клетках для синтеза ее структурных компонент, осмотической работы по обеспечению транспорта веществ через мембрану и механической работы по передвижению организма и сокращению мышц.
Питание является источником энергии и веществ, необходимых для жизнедеятельности. Растения усваивают солнечную энергию и самостоятельно создают питательные вещества в процессе фотосинтеза. У грибов, животных (и человека), некоторых растений и большинства бактерий — гетеротрофное (от греч. heteros— другой + trophe — пища) питание: они расщепляют с помощью ферментов органические вещества и усваивают продукты расщепления. Выделение — это выведение из организма конечных продуктов обмена с окружающей средой. Общее свойство открытых систем — обмен энергией и веществом с внешней средой — имеет свои особенности.
С помощью дыхания высвобождается энергия высокоэнергетических соединений, которая запасается в молекулах АТФ, обнаруженных во всех живых клетках. Дыхание относится к процессам метаболизма (от греч. metabole — перемена, превращение), или обмена веществ и энергии.
Раздражимость — избирательная реакция живых существ на изменения внешней и внутренней среды, обеспечивающая стабильность жизнедеятельности. Так, расширение кровеносных сосудов кожи млекопитающих при повышении температуры среды ведет к рассеиванию теплоты в окружающее пространство и восстановлению оптимальной температуры тела. Раздражителями могут быть пища, механические воздействия, свет, звук, температура окружающей среды, яды, электрический ток, радиоактивность...
Подвижность, или способность к движению, свойственна и животным, и растениям, хотя скорости их существенно различаются. Многие одноклеточные могут двигаться с помощью особых органоидов. У многоклеточных к движению способны как клетки, так и органоиды в них. В животных организмах движение осуществляется путем сокращения мышц.
Асимметрия — созидательный и структурообразующий принцип жизни. Неживые системы работают по законам симмет-
424

рии. В классической физике имеют место законы сохранения (энергии, импульса, момента импульса, заряда и пр.), которые связаны со свойствами симметрии пространства и времени. В изолированных системах происходят обратимые процессы, т. е. имеет место симметрия между прошлым и будущим. Замкнутые системы самопроизвольно и необратимо стремятся к равновесию, процессы идут с ростом энтропии. Законы квантовой физики — проявление более глубоких симметрии. Все функционально важные биомолекулы асимметричны: белки состоят из левовращающих аминокислот, а нуклеиновые кислоты содержат правовращающие сахара, закручена и сама молекула ДНК — двойная спираль. Все процессы происходят с учетом киральности, установлена даже функциональная асимметрия мозга человека. Живое — это открытая система, использующая для сохранения упорядоченности внешний поток энергии и вещества. Жизнь связана с непрерывным нарушением симметрии в отличие от неживых систем.
Дискретность и ц е л о с т н о с т ь — два фундаментальных свойства организации жизни на Земле. Нуклеиновые кислоты и белки — целостные соединения, но в то же время дискретны, так как состоят из нуклеотидов и аминокислот. Репликация ДНК — целостный непрерывный процесс, но она дискретна во времени и пространстве, так как в ней участвуют различные ферменты и генетические структуры. Живые объекты в природе относительно обособлены (особи, популяции, виды). Любая особь состоит из клеток, а клетка и одноклеточные существа — из отдельных орга-нелл. Органеллы состоят из дискретных, высокомолекулярных, органических веществ, которые, в свою очередь, состоят из дискретных атомов, а те — из элементарных частиц. Все эти части и структуры находятся в сложных взаимодействиях, и целостность живой системы отличается от целостности неживой тем, что она поддерживается в процессе развития. И среди живых систем нет двух одинаковых особей, популяций и видов. Жизнь на Земле проявляется в дискретных формах, причем все формы и части образуют структурно-функциональное единство.
В определении понятия «жизнь» к 80-м гг. XX в. сложилось две позиции. Функциональный подход объединял сторонников представлений об организме как о своеобразном «черном ящике» (с неизвестной внутренней структурой или с не особенно важной), своеобразие которого заключается в наличии «управляющих процессов» передачи информации. Лидеры этого подхода — математики А. А. Ляпунов и А. Н. Колмогоров — использовали средства высшей математики в определении специфики жизни, они рассматривали гомеостатические процессы. Их больше интересовали процессы преобразования информации, и они допускали возможность и небелковых форм жизни. Сторонники другого, субстанционального, подхода признавали ключевым наличие
425

определенных субстанций и определенных ее структур. К лидерам этого подхода относился и Опарин, для которого важнейшим было признание наличия обмена веществ, и выдающийся советский биолог В. А.Энгельгардт. Они считали, что изучение проблемы жизни должно основываться на данных химии, а не математики. В организации живого все указанные свойства проявляются на всех уровнях. Но каждый из них имеет и свои особенности.

16. УРОВНИ ОРГАНИЗАЦИИ ЖИВОЙ МАТЕРИИ -

представление об иерархической структурности живой материи. Выделяют следующие уровни организации живой материи: молекулярно-генетический, клеточный, органо-тканевый, организменный, популяционно-видовой, биоценотический, биосферный. Представление об уровнях организации живой материи отражает системный подход в изучении живой материи.

сложившееся к 60-м гг. 20 в. представление о структурности живого. Жизнь на Земле представлена индивидуумами определённого строения, принадлежащими к определённым систематич. группам, а также сообществами разной сложности. Индивидуумы обладают молекулярной, клеточной, тканевой, органной структурностью; сообщества бывают одновидовые и многовидовые. Индивидуумы и сообщества организованы в пространстве и во времени. По подходу к их изучению можно выделить неск. основных У. о. ж. м. на базе разных способов структурно-функц. объединения составляющих элементов: молекулярный, субклеточный, клеточный, органотканевый, организменный, популяционно-видовой, биоценотический, биогеоценотический, биосферный. На биосферном уровне совр. биология решает глобальные проблемы, напр. определение интенсивности образования свободного кислорода растит, покровом Земли или изменения концентрации углекислого газа в атмосфере, связанного с деятельностью человека. На биогеоценотическом и биоценотическом уровнях ведущими являются проблемы взаимоотношений организмов в биоценозах, условия, определяющие их численность и продуктивность биоценозов, устойчивость последних и роль влияний человека на сохранение биоценозов и их комплексов. На популяционно-видовом уровне изучают факторы, влияющие на численность популяций, проблемы сохранения исчезающих видов, динамики генетич. состава популяций, действие факторов микроэволюции и т. д. Для хоз. деятельности человека важны такие проблемы популяционной биологии, как контроль численности видов, наносящих ущерб хозяйству, поддержание оптимальной численности эксплуатируемых и охраняемых популяций. На организменном уровне изучают особь и свойственные ей как целому черты строения, физиол. процессы, в т. ч. дифференцировку, механизмы адаптации (акклимации) и поведения, в частности — нейрогумоарльные механизмы регуляции, функции ЦНС. На органотканевом уровне осн. проблемы заключаются в изучении особенностей строения и функций отд. органов и составляющих их тканей. Особый У. о. ж. м.— клеточный; биология клетки (цитология) — один из осн. разделов совр. биологии, включает проблемы морфологич. организаций клетки, специализации клеток в ходе развития, функций клеточной мембраны, механизмов и регуляции деления клетки. Эти проблемы имеют особенно важное значение для медицины, в частности, составляя основу проблемы рака. На уровне субклеточных, или надмолекулярных, структур изучают строение и функции органоидов (хромосом, митохондрий, рибосом и др.), а также др. включений клетки. Молекулярный уровень составляет предмет молекулярной биологии, изучающей строение белков, их функции как ферментов или элементов цитоскелета, роль нуклеиновых к-т в хранении, репликации и реализации генетич. информации, т. е. процессы синтеза ДНК, РНК и белков. На этом уровне достигнуты большие прак-тич. успехи в области биотехнологии и генной инженерии. Разделение живой материи и проблем биологии по уровням организации хотя и отражает объективную реальность, но в то же время является условным, т. к. почти все конкретные задачи биологии касаются одновременно неск. уровней, а нередко и всех сразу. Напр., проблемы эволюции или онтогенеза не могут рассматриваться только на уровне организма, т. е. без молекулярного, субклеточного, клеточного, органотканевого, а также популяционно-видового и биоценотич. уровней; проблема регуляции численности опирается на мол. уровень, но касается также всех вышестоящих, включая такие аспекты, как, напр., загрязнение всей биосферы. По наличию специфич. элементарных единиц и явлений считается достаточным выделение 4 осн. У. о. ж. м. (табл.). Представление об У. о. ж. м. наглядно отражает системный подход в изучении живой природы. (см. БИОЛОГИЧЕСКИЕ СИСТЕМЫ).

 




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 755; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.