КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Постановка задачи прогнозирования финансовых рынков с использованием искусственных нейросетей
Прогнозирование рынка FOREX с использованием искусственных нейросетей Как было отмечено в подразделе 1.3.5, задача прогнозирования с использованием ИНС сводится к задаче аппроксимации многомерных функций, т.е. к задаче построения многомерного отображения. В зависимости от типа выходных переменных, аппроксимация функций может принимать вид: классификации или регрессии. В задаче прогнозирования финансовых рынков можно выделить две крупные подзадачи: построение модели, обучение нейронных сетей реализующих решение задачи (т.е. фактически построение аппарата отображения). В результате изучения предметной области исследователем должна быть разработана модель прогнозирования, ключевыми составляющими которой должны быть: набор входных переменных; метод формирования входных признаков x; метод формирования обучающего правила y; архитектура нейросети (ей); метод обучения нейросети (ей). Для решения задачи прогнозирования необходимо найти: такую нейронную сеть или комитет нейроэкпертов, который бы наилучшим образом строил отображение F: x Þ y, обобщающее сформированный на основе ценовой динамики набор примеров { xt, yt }. Поиск такой нейронной сети или комитета нейроэкспертов осуществляется при помощи одного или нескольких алгоритмов «обучения». Здесь можно заметить, что нейросетевое моделирование в чистом виде базируется лишь на исходных данных (временном ряде). Нейронные сети можно применять для одномерного и многомерного анализа, должным образом сформировав множество независимых входов и зависящих от них выходов. Как правило, модель строится для того, чтобы предсказывать значения временного ряда для одной целевой переменной, однако, в принципе, модель может предсказывать значения и нескольких переменных (например, доходы по акциям на различное время вперед), если в сеть добавить дополнительные выходные элементы. При этом, однако, исследования в области прогнозирования временных рядов при помощи сетей продолжаются и в настоящее время, и никаких стандартных методов здесь пока не выработано. В нейронной сети многочисленные факторы взаимодействуют весьма сложным образом, и успех пока приносит только эвристический подход. Типичная последовательность действий при решении задачи прогнозирования финансовых показателей с помощью нейронных сетей показана на рис. 2.1.
Рис. 2.1. Блок-схема технологического цикла предсказаний рыночных временных рядов на основе нейросетей Далее кратко рассмотрим некоторые моменты этой технологической цепочки. Хотя общие принципы нейромоделирования применимы к задаче прогнозирования в полном объеме, предсказание финансовых временных рядов имеет свою специфику. На первом этапе исследователем определяются базовые характеристики данных, которые определяются торговой стратегией. Формируется база данных. На втором этапе определяется набор входных и прогнозируемых величин, производятся анализ и очистка базы данных. Для этих целей используются оптимизационные, статистические и другие методы. На третьем этапе производится формирование образов, подаваемых непосредственно на выходы нейросетей, с последующим созданием обучающих и тестовых множеств. Архитектура нейросети зависит от поставленной задачи, в большинстве случаев используются сети типа многослойный перцептрон. На пятом этапе с использованием выбранных алгоритмов обучения производится обучение нейронной сети, или, если это предполагается постановкой задачи, нескольких нейронных сетей (от двух до нескольких тысяч), которые после участвуют в «конкурсе» на попадание в комитет нейроэкспертов. Прогнозирование (шестой этап) осуществляется по тому же принципу, что и формирование обучающей выборки. При этом на этапе адаптивного предсказания и принятия решений выделяются две возможности: одношаговое и многошаговое прогнозирование. Подзадача получения входных образов для формирования входного множества в задачах прогнозирования временных рядов часто предполагает использование «метода окон». Метод окон подразумевает использование двух окон Wi и Wo с фиксированными размерами n и m соответственно. Эти окна, способны перемещаться с некоторым шагом по временной последовательности исторических данных, начиная с первого элемента, и предназначены для доступа к данным временного ряда, причем первое окно Wi, получив такие данные, передает их на вход нейронной сети, а второе - Wo - на выход. Получающаяся на каждом шаге пара Wi -> Wo используется как элемент обучающей выборки (распознаваемый образ, или наблюдение). Каждый следующий вектор получается в результате сдвига окон Wi и Wo вправо на один шаг. Предполагается наличие скрытых зависимостей во временной последовательности как множестве наблюдений. Нейронная сеть, обучаясь на этих наблюдениях и соответственно настраивая свои коэффициенты, пытается извлечь эти закономерности и сформировать требуемую функцию прогноза P.
Дата добавления: 2014-11-06; Просмотров: 583; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |