Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Постановка задачи прогнозирования финансовых рынков с использованием искусственных нейросетей




Прогнозирование рынка FOREX с использованием искусственных нейросетей

Как было отмечено в подразделе 1.3.5, задача прогнозирования с использованием ИНС сводится к задаче аппроксимации многомерных функций, т.е. к задаче построения многомерного отображения. В зависимости от типа выходных переменных, аппроксимация функций может принимать вид: классификации или регрессии. В задаче прогнозирования финансовых рынков можно выделить две крупные подзадачи: построение модели, обучение нейронных сетей реализующих решение задачи (т.е. фактически построение аппарата отображения).

В результате изучения предметной области исследователем должна быть разработана модель прогнозирования, ключевыми составляющими которой должны быть: набор входных переменных; метод формирования входных признаков x; метод формирования обучающего правила y; архитектура нейросети (ей); метод обучения нейросети (ей).

Для решения задачи прогнозирования необходимо найти: такую нейронную сеть или комитет нейроэкпертов, который бы наилучшим образом строил отображение F: x Þ y, обобщающее сформированный на основе ценовой динамики набор примеров { xt, yt }. Поиск такой нейронной сети или комитета нейроэкспертов осуществляется при помощи одного или нескольких алгоритмов «обучения».

Здесь можно заметить, что нейросетевое моделирование в чистом виде базируется лишь на исходных данных (временном ряде).

Нейронные сети можно применять для одномерного и многомерного анализа, должным образом сформировав множество независимых входов и зависящих от них выходов. Как правило, модель строится для того, чтобы предсказывать значения временного ряда для одной целевой переменной, однако, в принципе, модель может предсказывать значения и нескольких переменных (например, доходы по акциям на различное время вперед), если в сеть добавить дополнительные выходные элементы.

При этом, однако, исследования в области прогнозирования временных рядов при помощи сетей продолжаются и в настоящее время, и никаких стандартных методов здесь пока не выработано. В нейронной сети многочисленные факторы взаимодействуют весьма сложным образом, и успех пока приносит только эвристический подход. Типичная последовательность действий при решении задачи прогнозирования финансовых показателей с помощью нейронных сетей показана на рис. 2.1.

 

1. Определение временного интервала. Формирование базы данных.
2. Определение входных величин. Определение прогнозируемых величин. Предварительная обработка данных
3. Формирование входных множеств (обучающего, тестового)
4. Выбор архитектуры нейросетей
5. Обучение нейросетей
6. Адаптивное предсказание и принятие решений

 

Рис. 2.1. Блок-схема технологического цикла предсказаний рыночных временных рядов на основе нейросетей

Далее кратко рассмотрим некоторые моменты этой технологической цепочки. Хотя общие принципы нейромоделирования применимы к задаче прогнозирования в полном объеме, предсказание финансовых временных рядов имеет свою специфику.

На первом этапе исследователем определяются базовые характеристики данных, которые определяются торговой стратегией. Формируется база данных.

На втором этапе определяется набор входных и прогнозируемых величин, производятся анализ и очистка базы данных. Для этих целей используются оптимизационные, статистические и другие методы.

На третьем этапе производится формирование образов, подаваемых непосредственно на выходы нейросетей, с последующим созданием обучающих и тестовых множеств.

Архитектура нейросети зависит от поставленной задачи, в большинстве случаев используются сети типа многослойный перцептрон.

На пятом этапе с использованием выбранных алгоритмов обучения производится обучение нейронной сети, или, если это предполагается постановкой задачи, нескольких нейронных сетей (от двух до нескольких тысяч), которые после участвуют в «конкурсе» на попадание в комитет нейроэкспертов.

Прогнозирование (шестой этап) осуществляется по тому же принципу, что и формирование обучающей выборки. При этом на этапе адаптивного предсказания и принятия решений выделяются две возможности: одношаговое и многошаговое прогнозирование.

Подзадача получения входных образов для формирования входного множества в задачах прогнозирования временных рядов часто предполагает использование «метода окон». Метод окон подразумевает использование двух окон Wi и Wo с фиксированными размерами n и m соответственно. Эти окна, способны перемещаться с некоторым шагом по временной последовательности исторических данных, начиная с первого элемента, и предназначены для доступа к данным временного ряда, причем первое окно Wi, получив такие данные, передает их на вход нейронной сети, а второе - Wo - на выход. Получающаяся на каждом шаге пара Wi -> Wo используется как элемент обучающей выборки (распознаваемый образ, или наблюдение). Каждый следующий вектор получается в результате сдвига окон Wi и Wo вправо на один шаг. Предполагается наличие скрытых зависимостей во временной последовательности как множестве наблюдений. Нейронная сеть, обучаясь на этих наблюдениях и соответственно настраивая свои коэффициенты, пытается извлечь эти закономерности и сформировать требуемую функцию прогноза P.




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 583; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.