КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Биогеохимические циклы наиболее важных для жизни организмов биогенных веществ
Наиболее жизненно важными можно считать вещества, из которых, в основном, состоят белковые молекулы. К ним относятся углерод, азот, кислород, фосфор, сера. Биогеохимические циклы углерода, азота и кислорода (рис. 6.9) наиболее совершенны. Благодаря большим атмосферным резервам, они способны к быстрой саморегуляции. В круговороте углерода, а точнее ¾ наиболее подвижной его формы ¾ CO2, четко прослеживается трофическая цепь: продуценты ¾ улавливающие углерод из атмосферы при фотосинтезе, консументы ¾ поглощающие углерод вместе с телами продуцентов и консументов низших порядков, редуцентов ¾ возвращающих углерод вновь в круговорот. Скорость оборота CO2 составляет порядка 300 лет (полная его замена в атмосфере и других элементов цикла (рис.6.10). Рис. 6.9. Схема биогеохимического круговорота веществ на суше (по Р. Кашанову, 1984) Рис. 6.10. Темпы циркуляции веществ (Клауд и Джибор, 1972) В Мировом океане трофическая цепь: ¾ продуценты (фитопланктон) ¾ консументы (зоопланктон, рыбы) ¾ редуценты (микроорганизмы) ¾ осложняется тем, что некоторая часть углерода мертвого организма, опускаясь на дно, «уходит» в осадочные породы и участвует уже не в биологическом, а в геологическом круговороте вещества. Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд т этого элемента, что составляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот углерода приводит к возрастанию содержания CO2 в атмосфере. Скорость круговорота кислорода ¾ 2000 лет (рис. 6.10), именно за это время весь кислород атмосферы проходит через живое вещество. Основной поставщик кислорода на Земле ¾ зеленые растения. Ежегодно они производят на суше 53 × 109 т кислорода, а в океанах ¾ 414 × 109 т. Главный потребитель кислорода ¾ животные, почвенные организмы и растения, использующие его в процессе дыхания. Процесс круговорота кислорода в биосфере весьма сложен, так как он содержится в очень многих химических соединениях. Подсчитано, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который освобождается в процессе фотосинтеза. Предполагается, что ближайшее время весь продуцированный кислород будет сгорать в топках, а следовательно, необходимо значительное усиление фотосинтеза и другие радикальные меры. Биогеохимический круговорот азота не менее сложен, чем углерода и кислорода, и охватывает все области биосферы. Поглощение его растениями ограничено, так как они усваивают азот только в форме соединения его с водородом и кислородом. И это при том, что запасы азота в атмосфере неисчерпаемы (78% от ее объема). Редуценты (деструкторы), а конкретно почвенные бактерии, постепенно разлагают белковые вещества отмерших организмов и превращают их в аммонийные соединения, нитраты и нитриты. Часть нитратов попадает в процессе круговорота в подземные воды и загрязняет их. Опасность заключается также и в том, что азот в виде нитратов и нитритов усваивается растениями и может передаваться по пищевым (трофическим) цепям. Азот возвращается в атмосферу вновь с выделенными при гниении газами. Роль бактерий в цикле азота такова, что если будет уничтожено только 12 их видов, участвующих в круговороте азота, жизнь на Земле прекратится. Так считают американские ученые. Биогеохимический круговорот в биосфере помимо кислорода, углерода и азота совершают и многие другие элементы, входящие в состав органических веществ ¾ сера, фосфор, железо и др. Биогеохимические циклы фосфора и серы, важнейших биогенных элементов, значительно менее совершенны, так как основная их масса содержится в резервном фонде земной коры, в «недоступном» фонде. Круговорот серы и фосфора ¾ типичный осадочный биогеохимический цикл. Такие циклы легко нарушаются от различного рода воздействий и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом биофильных компонентов. Фосфор содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот (рис. 6.11) он может попасть в случае подъема этих пород из глубины земной коры на поверхность суши, в зону выветривания. Эрозионными процессами он выносится в море в виде широко известного минерала ¾ апатита. Рис. 6.11. Круговорот фосфора в биосфере (по П. Дювиньо, М. Тангу, 1973; с изменениями) Общий круговорот фосфора можно разделить на две части ¾ водную и наземную. В водных экосистемах он усваивается фитопланктоном и передается по трофической цепи вплоть до консументов третьего порядка ¾ морских птиц. Их экскременты (гуано) снова попадают в море и вступают в круговорот, либо накапливаются на берегу и смываются в море. Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глубин и заключенный в них фосфор снова попадает в осадочные породы. В наземных экосистемах фосфор извлекается растениями из почв и далее он распространяется по трофической сети. Возвращается в почву после отмирания животных и растений и с их экскрементами. Теряется фосфор из почв в результате их водной эрозии. Повышенное содержащие фосфора на водных путях его переноса вызывает бурное увеличение биомассы водных растений, «цветение» водоемов и их эвтрофикацию. Большая же часть фосфора уносится в море и там теряется безвозвратно. Последнее обстоятельство может привести к истощению запасов фосфорсодержащих руд (фосфоритов, апатитов и др.). Следовательно, надо стремиться избежать этих потерь и не ожидать того времени, когда Земля вернет на сушу «потерянные отложения». Сера также имеет основной резервный фонд в отложениях и почве, но, в отличие от фосфора, имеет резервный фонд и в атмосфере (рис. 6.12). В обменном фонде главная роль принадлежит микроорганизмам. Одни из них ¾ восстановители, другие ¾ окислители. Рис. 6.12. Круговорот серы (по Ю. Одуму, 1975): «Кольцо» в центре схемы иллюстрирует процессы окисления (О) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата (SO4) и фондом сульфидов железа, находящихся глубоко в почве и в осадках В горных породах сера встречается в виде сульфидов (FeS2 и др.), в растворах ¾ в форме иона (SO4)2, в газообразной фазе в виде сероводорода (H2S) или сернистого газа (SO2). В некоторых организмах сера накапливается в чистом виде (S2) и при их отмирании на дне морей образуются залежи самородной серы. В морской среде сульфат-ион занимает второе место по содержанию после хлора и является основной доступной формой серы, которая восстанавливается автотрофами и включается в состав аминокислот. Круговорот серы, хотя ее требуется организмам в небольших количествах, является ключевым в общем процессе продуцирования и разложения (Ю. Одум, 1986). Например, при образовании сульфидов железа, фосфор переходит в растворимую форму, доступную для организмов. В наземных экосистемах сера возвращается в почву при отмирании растений, захватывается микроорганизмами, которые восстанавливают ее до H2S. Другие организмы и воздействие самого кислорода приводят к окислению этих продуктов. Образовавшиеся сульфаты растворяются и поглощаются растениями из поровых растворов почвы ¾ так продолжается круговорот. Однако круговорот серы, так же как и азота, может быть нарушен вмешательством человека (см. рис. 6.12). Виной тому прежде всего сжигание ископаемого топлива, а особенно угля. Сернистый газ (SO2) нарушает процессы фотосинтеза и приводит к гибели растительности. Биогеохимические циклы легко нарушаются человеком. Так, добывая минеральные удобрения, он загрязняет воду и воздушную среду. В воду попадает фосфор, вызывая эвтрофикацию, азотистые высокотоксичные соединения и др. Иными словами, круговорот становится не циклическим, а ациклическим. Охрана природных ресурсов должна быть направлена на то, чтобы ациклические процессы превратить в циклические. Таким образом, всеобщий гомеостаз биосферы зависит от стабильности биогеохимического круговорота веществ в природе. Но являясь планетарной экосистемой, она состоит из экосистем всех уровней, первоочередное значение для ее гомеостаза имеют целостность ее и устойчивость природных экосистем. Контрольные вопросы 1. Какое место биосфера занимает среди оболочек Земли и в чем ее коренное отличие от других оболочек? 2. Из чего состоят абиотическая и биотическая части биосферы как глобальной экосистемы? 3. Что понимал В. И. Вернадский под живым веществом планеты? 4. Какие биохимические принципы лежат в основе биогенной миграции? 5. Как осуществляется большой круговорот веществ, в том числе большой круговорот воды, в природе? 6. Какие важнейшие функции живого вещества обеспечиваются посредством малого круговорота веществ в природе? 7. Какова роль резервного и обменного фондов в биогеохимическом круговороте веществ? 8. В чем особенности биогеохимических циклов основных биогенных элементов?
Дата добавления: 2014-11-07; Просмотров: 1082; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |