Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Разговоры о репрезентативности




Как тренировать интуицию

Ваша предположение, что завтра будет дождь, – это субъективная уверенность, но не следует позволять себе верить всему, что приходит в голову. Чтобы быть полезными, ваши убеждения должны ограничиваться логикой вероятности. Если вы считаете, что вероятность дождя завтра 40 %, также следует верить, что вероятность того, что дождя не будет, сост авляет 60 %, и не следует верить, что вероятность дождя завтра утром 50 %. А если вы верите, что кандидат Х. станет президентом с вероятностью 30 % и, в случае избрания, будет переизбран с вероятностью 80 %, то вы должны верить, что он будет избран дважды с вероятностью 24 %.
Правила, важные для случаев вроде задачи о Томе В., предлагаются байесовской статистикой. Этот важный современный подход к статистике назван в честь преподобного Томаса Байеса, английского священника XVIII века, сделавшего первый крупный вклад в решение серьезной задачи: логику того, как следует менять свое мнение в присутствии фактов. Правило Байеса определяет, как сочетать существующие убеждения (априорные вероятности) с диагностической ценностью информации, то есть насколько гипотезу следует предпочитать альтернативе. Например, если вы считаете, что 3 % студентов-магистров занимаются компьютерными науками (априорная вероятность), и также считаете, что, судя по описанию, Том В. в четыре раз а вероятнее изучает именно их, чем другие науки, то по формуле Байеса следует считать, что вероятность того, что Том В. – компьютерщик, составляет 11 %. Если априорная вероятность составляла 80 %, то новая степень уверенности будет 94,1 %, и так далее.
Математические подробности в этой книге не важны. Необходимо помнить два важных положения о ходе байесовских рассуждений и о том, как мы его обычно нарушаем. Во-первых, априорные вероятности важны даже при наличии информации о рассматриваемом случае. Часто это интуитивно не очевидно. Во-вторых, интуитивные впечатления о диагностической ценности информации часто преувеличены. WYSIATI и ассоциативная когерентность заставляют нас верить в истории, которые мы сами для себя сочиняем. Ключевые правила упорядоченных байесовских рассуждений формулируются очень просто:

• Оценку вероятности результата следует основывать на достоверной априорной вероятности.
• Необходимо сомневат ься в диагностической ценности вашей информации.

Оба правила просты и ясны. Как ни странно, меня никогда не учили, как ими пользоваться, и даже сейчас следование им кажется мне неестественным.

 


«Газон ухожен, секретарь в приемной выглядит профессионалом, мебель красива, но из этого не следует, что компанией хорошо управляют. Надеюсь, совет директоров не пойдет на поводу у репрезентативности».

«Эта новая компания выглядит многообещающе, но априорная вероятность успеха в этой отрасли очень низкая. Откуда мы знаем, что в данном случае все будет по-другому?»

«Они постоянно делают одну и ту же ошибку: предсказывают маловероятные события на основании недостаточных данных. При недостатке информации всегда лучше придерживаться априорных вероятностей».

«Я понимаю, что этот изобличительный отчет, возм ожно, основывается на веских доказательствах, но уверены ли мы в этом? При его рассмотрении следует учитывать сомнительность данных».

 




Поделиться с друзьями:


Дата добавления: 2014-11-07; Просмотров: 764; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.