КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Ошибка Бернулли
Как хорошо понимал Фехнер, он не первый пытался найти функцию, связывающую психол огическую интенсивность с физической силой стимула. В 1738 году швейцарский ученый Даниил Бернулли предвосхитил объяснения Фехнера и применил их к отношениям между психологической ценностью или желательностью денег (сейчас называемой «полезность») и реальным количеством денег. Он утверждал, что подарок в 10 дукатов обладает той же полезностью для человека, уже имеющего 100 дукатов, что и 20 дукатов – для обладателя 200 дукатов. Бернулли был прав, разумеется: мы обычно говорим об изменениях дохода в процентах, например, когда говорим «ей дали 30 % прибавки». Идея в том, что 30 %-ная надбавка вызывает схожую психологическую реакцию у богатого и бедного, а прибавка 100 долларов – нет. Как в законе Фехнера, психологическая реакция на изменение размера богатства обратно пропорциональна исходному капиталу; отсюда следует вывод, что полезность – логарифмическая функция богатства. Если функция точна, одна и та же психологическая дистанция отделяет 100 тысяч долларов от 1 миллиона, а 10 миллион ов – от 100 миллионов долларов. «80 %-ная вероятность выиграть 100 долларов и 20 %-ная вероятность выиграть 10 долларов» Теперь спросите себя: что вы предпочли бы получить в подарок – такую игру или гарантированные 80 долларов? Почти все выберут гарантированные деньги. Если бы человек подсчитал неопределенные перспективы по ожидаемой ценности, он выбрал бы игру, поскольку 82 доллара больше, чем 80. Бернулли указал, что в действите льности игры так не оценивают. Таблица 3 Бернулли предположил, что (пользуясь современным языком) уменьшение предельной ценности богатства объясняет неприятие риска – обычный выбор людей в пользу гарантированной суммы по сравнению с благоприятной игрой с равной или чуть большей ожидаемой ценностью. Рассмотрим этот выбор. Равные шансы получить 1 миллион или 7 миллионов – полезность: Ожидаемая ценность игры и «гарантированной суммы» равны в денежном выражении (4 миллиона), но психологическая полезность этих вариантов различна из-за снижающейся полезности богатства: увеличение полезности при росте богатства с 1 до 4 миллионов – 50 единиц, но такое же увеличение с 4 до 7 миллионов увеличивает полезность богатства только на 24 единицы. Полезность игры составляет 94/2 = 47 (полезность двух исходов, вероятность каждого – 1/2). Полезность 4 миллионов – 60. Поскольку 60 больше, чем 47, человек, использующий эту функцию полезности, предпочтет гарантированные деньги. Открытие Бернулли состояло в том, что человек, принимающий решение в рамках уменьшающейся предельной полезности богатства, будет избегать риска. Сегодня у Джека и Джилл есть по 5 миллионов у каждого. Теория Бернулли полагает, что именно полезность богатства делает людей счастливее или несчастнее. У Джека и Джилл одинаковое богатство, так что теория утверждает, что они должны испытывать одинаковое удовольствие; однако не нужно обладать глубокими познаниями в области психологии, чтобы понять, что Джек сегодня ликует, а Джилл – в отчаянии. Мы даже знаем, что Джек был бы намного счастливее Джилл, если бы у него сегодня оказалось 2 миллиона, а у Джилл – 5. Так что теория Бернулли ошибается. Текущее состояние Энтони – 1 миллион. Им обоим предлагают выбрать между игрой и гарантированной суммой. Игра: равные шансы иметь в итоге 1 милли он или 4 миллиона С точки зрения Бернулли, Энтони и Бетти стоят перед одним и тем же выбором: ожидаемое богатство составит 2,5 миллиона в случае игры и 2 миллиона, если они выберут гарантированные деньги. Бернулли, таким образом, предположил бы, что Энтони и Бетти сделают одинаковый выбор; но это предсказание неверно. Здесь теория не срабатывает, потому что не учитывает различные точки отсчета, с которых Энтони и Бетти оценивают варианты. Представьте себя на месте Энтони и Бетти, и вы быстро сообразите, что текущее состояние значит очень много. Вот примерный ход их мыслей: Энтони (у которого сейчас 1 миллион): «Если я выберу гарантированные деньги, мое состояние удвоится. Это очень заманчиво. С другой стороны, я могу сыграть – с равными шансами получить вчетверо больше или не выиграть ничего». Бетти (у которой 4 миллиона): «Есл и я выберу гарантированные деньги, я потеряю половину состояния – и это ужасно. С другой стороны, я могу сыграть – с равными шансами потерять три четверти состояния или не потерять ничего». Легко понять, что Энтони и Бетти стоят перед разным выбором, потому что гарантированное обладание 2 миллионами принесет Энтони радость, а Бетти – горе. Обратите также внимание, как отличается гарантированный исход от худшего исхода игры: для Энтони это выбор между удвоением богатства и нулевым выигрышем; для Бетти – выбор между потерей половины состояния и потерей трех четвертей. Бетти, скорее всего, попытает счастья, как и все, кто выбирает из двух зол. В таком изложении истории ни Энтони, ни Бетти не рассуждают в терминах размера богатства; Энтони рассуждает о выигрыше, а Бетти – о потерях. Психологические исходы, которые они рассматривают, совершенно различны, хотя возможные размеры богатства одинаковы.
Дата добавления: 2014-11-07; Просмотров: 377; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |