КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Электростатического поля
Проводника и конденсатора. Энергия Энергия системы зарядов, уединенного
1. Энергия системы неподвижных точечных зародов. Электростатические силы взаимодействия консервативны (см. § 83); следовательно, система зарядов обладает потенциальной энергией. Найдем потенциальную энергию системы двух неподвижных точечных зарядов Q1 и Q2, находящихся на расстоянии г друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (см. (84.2) и (84.5)): где j12 и j21— соответственно потенциалы, создаваемые зарядом Q2в точке нахождения заряда Q1и зарядом Q1в точке нахождения заряда Q 2. Согласно (84.5),
Добавляя к системе из двух зарядов последовательно заряды 2з, б4> —. можно убедиться в том, что в случае и неподвижных зарядов энергия взаимодействия системы точечных зарядов равна (95.1) где ji— потенциал, создаваемый в той точке, где находится заряд Qi, всеми зарядами, кроме i-ro. 2. Энергия заряженного уединенного проводника. Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны Q, С, j.Увеличим заряд этого проводника на &Q. Для этого необходимо перенести заряд dQиз бесконечности на уединенный проводник, затратив на это работу, равную Чтобы зарядить тело от нулевого потенциала до j, необходимо совершить работу (95.2) Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник: (95.3) Формулу (95.3) можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Полагая потенциал проводника равным j, из (95.1) найдем где - заряд проводника. 3. Энергия заряженного конденсатора. Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (95.3) равна (95.4) где Q — заряд конденсатора, С — его емкость, Dj — разность потенциалов между обкладками конденсатора. Используя выражение (95.4), можно найти механическую (пондеромоторную) силу, с которой пластины конденсатора притягивают друг друга. Для этого предположим, что расстояние х между пластинами меняется, например, на величину D х. Тогда действующая сила совершает работу dA = Fdxвследствие уменьшения потенциальной энергии системы Fdx = —dW, откуда (95.5) Подставив в (95.4) выражение 04.3), получим (95.6) Производя, дифференцирование при конкретном значении энергии (см. (95.5) и (95.6)), найдем искомую силу: где знак минус указывает, что сила Fявляется силой притяжения. 4. Энергия электростатического поля. Преобразуем формулу (95.4), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовавшись выражением для емкости плоского конденсатора (C = e0eS/d)и разности потенциалов между его обкладками (Dj = Ed).Тогда (95.7) где V = Sd— объем конденсатора. Формула (95.7) показывает, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, — напряженность Е. Объемная плотность энергии электростатического поля (энергия единицы объема) (95.8) Выражение (95.8) справедливо только для изотропного диэлектрика, для которого выполняется соотношение (88.2): Р = æe0Е. Формулы (9S.4) и (95.7) соответственно связывают энергию конденсатора с зарядом на его обкладках и с напряженностью поля. Возникает, естественно, вопрос о локализации электростатической энергии и что является ее носителем — заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика изучает постоянные во времени поля неподвижных зарядов, т. е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные вопросы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, способных переносить энергию. Это убедительно подтверждает основное положение теории, близкодействия о том, что энергия локализована в поле и что носителем энергии является поле.
Дата добавления: 2014-11-07; Просмотров: 434; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |