КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дисперсия света
Взаимодействие электромагнитных волн с веществом Задачи
23.1. Плоская световая волна с длиной волны 0,6 мкм падает нормально на диафрагму с круглым отверстием диаметром 1 см. Определить расстояние от точки наблюдения до отверстия, если отверстие открывает: 1) две зоны Френеля; 2) три зоны Френеля. [1) 20,8 м; 2) 13,9 м]
23.2. Дифракционная картина наблюдается на расстоянии 1 м от точечного источника монохроматического света (l = 0,5 мкм). Посередине между источником света и экраном находится диафрагма с круглым отверстием. Определить радиус отверстия, при котором центр дифракционной картины на экране будет наиболее темным. [0,5 мм]
23.3. На щель шириной 0,2 мм падает нормально монохроматический свет с длиной волны 0,5 мкм. Экран, на котором наблюдается дифракционная картина, расположен параллельно щели на расстоянии 1 м. Определить расстояние между первыми дифракционными минимумами, расположенными по обе стороны центрального фраунгоферова максимума. [5 мм]
23.4. Определить число штрихов на 1 мм дифракционной решетки, если углу l /2 соответствует максимум пятого порядка для монохроматического света с длиной волны 0,5 мкм. [400 мм"1]
23.5. Узкий параллельный пучок монохроматического рентгеновского излучения падает на грань кристалла с расстоянием 0,28 нм между его атомными плоскостями. Определить длину волны рентгеновского излучения, если под углом 30° к плоскости грани наблюдается дифракционный максимум второго порядка. [140 пм]
23.6. Определить постоянную дифракционной решетки, если она в первом порядке разрешает две спектральные линии калия (l1 =578 нм и l 2 =580 нм). Длина решетки 1 см. [34,6 мкм]
Глава 24
Дисперсией света называется зависимость показателя преломления л вещества от частоты v (длины волны l) света или зависимость фазовой скорости v световых волн (см. § 154) от его частоты v. Дисперсия света представляется в виде зависимости (185.1) Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму. Первые экспериментальные наблюдения дисперсии света принадлежат И. Ньютону (1672 г.). Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления п (рис. 268) под углом a1. После двукратного преломления (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол j.
Рис. 268 Из рисунка следует, что (185.2) Предположим, что углы А и a1малы, тогда углы a2, b1и b2 будут также малы и вместо синусов этих углов можно воспользоваться их значениями. Поэтому a1/b1 = n, b2/a2 = 1/n, а так как b1 + b2 = A, то a2 = b2n = n(A - b1) = n(A - a1/n) = nA - a1, откуда (185.3)
Из выражений (185.3) и (185.2) следует, что (185.4) т. е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы. Из выражения (185.4) вытекает, что угол отклонения лучей призмой зависит от величины n - 1, а n — функция длины волны, поэтому лучи разных длин волн после прохождения призмы окажутся отклоненными на разные углы, т. е. пучок белого света за призмой разлагается в спектр, что и наблюдалось И. Ньютоном. Таким образом, с помощью призмы, так же как и с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав. Рассмотрим различия в дифракционном и призматическом спектрах. 1. Дифракционная решетка разлагает падающий свет непосредственно по длинам волн (см. (180.3)), поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны. Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения длины волны света надо знать зависимость n = ¦(l) (185.1). 2. Составные цвета в дифракционном и призматическом спектрах располагаются различно. Из (180.3) следует, что в дифракционной решетке синус угла отклонения пропорционален длине волны. Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи в спектр по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны уменьшается (рис. 269). Поэтому красные лучи отклоняются призмой слабее, чем фиолетовые. Величина называемая дисперсией вещества, показывает, как быстро изменяется показатель прело мления с длиной волны. Из рис. 269 следует, что показатель преломления для прозрачных веществ с уменьшением длины волны увеличивается; следовательно, величина dn/dl по модулю также увеличивается с уменьшением l.
Рис. 269 Такая дисперсия называется нормальной. Как будет показано ниже, ход кривой n(l) — кривой дисперсии — вблизи линий и полос поглощения будет иным: n уменьшается с уменьшением l. Такой ход зависимости n от l называется аномальной дисперсией. На явлении нормальной дисперсии основано действие призменных спектрографов. Несмотря на их некоторые недостатки (например, необходимость градуировки, различная дисперсия в разных участках спектра) при определении спектрального состава света, призменные спектрографы находят широкое применение в спектральном анализе. Это объясняется тем, что изготовление хороших призм значительно проще, чем изготовление хороших дифракционных решеток. В призменных спектрографах также легче получить большую светосилу.
Дата добавления: 2014-11-07; Просмотров: 871; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |