Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

КУРС ФИЗИКИ 27 страница




Рассмотренный контур оказывает большое сопротивление переменному току с ча­стотой, близкой к резонансной. Поэтому это свойство резонанса токов используется в резонансных усилителях, позволяющих выделять одно определенное колебание из сигнала сложной формы. Кроме того, резонанс токов используется в индукционных печах, где нагревание металлов производится вихревыми токами (см. § 125). В них емкость конденсатора, включенного параллельно нагревательной катушке, подбирает­ся так, чтобы при частоте генератора получился резонанс токов, в результате чего сила тока через нагревательную катушку будет гораздо больше, чем сила тока в подводя­щих проводах.

§ 152. Мощность, выделяемая в цепи переменного тока

Мгновенное значение мощности переменного тока равно произведению мгновенных значений напряжения и силы тока:

где U(t)=U mcos wt, I(t)=I mcos(wt – j) (см. выражения (149.1) и (149.11)). Раскрыв cos(wt – j), получим

Практический интерес представляет не мгновенное значение мощности, а ее среднее значение за период колебания. Учитывая, что ácos2 w t ñ= 1/2, ásin w t cos w t ñ = 0, получим

(152.1)

Из векторной диаграммы (см. рис. 216) следует, что U m сos j = RI m. Поэтому

Такую же мощность развивает постоянный ток .

Величины

называются соответственно действующими (или эффективными) значениями тока и напряжения. Все амперметры и вольтметры градуируются по действующим значениям тока и напряжения.

Учитывая действующие значения тока и напряжения, выражение средней мощности (152.1) можно запасать в виде

(152.2)

где множитель соs j называется коэффициентом мощности.

Формула (152.2) показывает, что мощность, выделяемая в цепи переменного тока, в общем случае зависит не только от силы тока и напряжения, но и от сдвига фаз между ними. Если в цепи реактивное сопротивление отсутствует, то cos j =1 и P=IU. Если цепь содержит только реактивное сопротивление (R =0), то cos j =0 и средняя мощ­ность равна нулю, какими бы большими ни были ток и напряжение. Если cos j имеет значения, существенно меньшие единицы, то для передачи заданной мощности при данном напряжении генератора нужно увеличивать силу тока I, что приведет либо к выделению джоулевой теплоты, либо потребует увеличения сечения проводов, что повышает стоимость линий электропередачи. Поэтому на практике всегда стремятся увеличить соs j, наименьшее допустимое значение которого для промышленных уста­новок составляет примерно 0,85.

18.1. Материальная точка, совершающая гармонические колебания с частотой n = 2 Гц, в мо­мент времени t= 0 проходит положение, определяемое координатой х 0 6 см, со скоро­стью v 0=14 см/с. Определить амплитуду колебания. [6,1 см]

18.2. Полная энергия гармонически колеблющейся точки равна 30 мкДж, а максимальная сила, действующая на точку, равна 1,5 мН. Написать уравнение движения этой точки, если период колебаний равен 2 с, а начальная фаза p/3. [x=0,04cos(p t +p/3)]

18.1. При подвешивании грузов массами m 1 = 500 г и m 2 = 400 г к свободным пружинам пос­ледние удлинились одинаково (D l =15 см). Пренебрегая массой пружин, определить: 1) периоды колебаний грузов; 2) который из грузов при одинаковых амплитудах обладает большей энергией и во сколько раз. [1) 0,78 с; 2) 1,25]

18.4. Физический маятник представляет собой тонкий однородный стержень длиной 25 см. Определить, на каком расстоянии от центра масс должна быть точка подвеса, чтобы частота колебаний была максимальной. [7,2 см]

18.5. Два математических маятника, длины которых отличаются на D l = 16 см, совершают за одно и то же время: один n 1=10 колебаний, другой n 2= 6 колебаний. Определить длины маятников l 1 и l 2. [ l 1=9 см, l 2=25 см]

18.6. Колебательный контур содержит катушку с общим числом витков, равным 50, индук­тивностью 5 мкГн и конденсатор емкостью 2 нФ. Максимальное напряжение на обклад­ках конденсатора составляет 150 В. Определить максимальный магнитный поток, прони­зывающий катушку. [0,3 мкВб]

18.7. Разность фаз двух одинаково направленных гармонических колебаний одинакового пе­риода, равного 8 с, и одинаковой амплитуды 2 см составляет p/4. Написать уравнение движения, получающегося в результате сложения этих колебаний, если начальная фаза одного из них равна нулю. [ х =0,037 соs (p t/ 4+p/8)]

18.8. Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями х= cosp t и y= cosp t/2. Определить уравнение траектории точки и вычертить ее с нанесением масштаба. [2 y 2х =1]

18.9. За время, за которое система совершает 100 полных колебаний, амплитуда уменьшается в три раза. Определить добротность системы. [286]

18.10. Колебательный контур содержит катушку индуктивностью 25 мГн, конденсатор емкостью 10 мкФ и резистор сопротивлением 1 Ом. Заряд на обкладках конденсатора Q m=1 мКл. Определить: 1) период колебаний контура; 2) логарифмический декремент затухания колебаний; 3) уравнение зависимости изменения напряжения на обкладках конденсато­ра от времени. [1) 3,14 мс; 2) 0,06; 3) U= 100 e 20 t cos636 pt ]

18.11. Последовательно соединенные резистор с сопротивлением 110 Ом и конденсатор под­ключены к внешнему переменному напряжению с амплитудным значением 110 В. Оказа­лось, что амплитудное значение установившегося тока в цепи 0,5 А. Определить разность фаз между током и внешним напряжением. [60°]

18.12. В цепь переменного тока частотой 50 Гц включена катушка длиной 50 см и площадью поперечного сечения 10 см2, содержащая 3000 витков. Определить активное сопротивле­ние катушки, если сдвиг фаз между напряжением и током составляет 60°. [4,1 Ом]

18.13. Генератор, частота которого составляет 32 кГц и амплитудное значение напряжения равно 120 В, включен в резонирующую цепь, емкость которой 1 нФ. Определить амп­литудное значение напряжения на конденсаторе, если активное сопротивление цепи 5 Ом. [119 кВ]

18.14. Колебательный контур содержит катушку индуктивностью 5 мГн и конденсатор емкостью 2 мкФ. Для поддержания в колебательном контуре незатухающих гармонических колеба­ний с амплитудным значением напряжения на конденсаторе 1 В необходимо подводить среднюю мощность 0,1 мВт. Считая затухание колебаний в контуре достаточно малым, определить добротность данного контура. [100]

Глава 19Упругие волны

§ 153. Волновые процессы. Продольные и поперечные волны

Колебания, возбужденные в какой-либо точке среды (твердой, жидкой или газообраз­ной), распространяются в ней с конечной скоростью, зависящей от свойств среды, передаваясь от одной точки среды к другой. Чем дальше расположена частица среды от источника колебаний, тем позднее она начнет колебаться. Иначе говоря, фазы колеба­ний частиц среды и источника тем больше отличаются друг от друга, чем больше это расстояние. При изучении распространения колебаний не учитывается дискретное (молекулярное) строение среды и среда рассматривается как сплошная, т. е. непрерыв­но распределенная в пространстве и обладающая упругими свойствами.

Процесс распространения колебаний в сплошной среде называется волновым про­цессом (или волной). При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.

Среди разнообразных волн, встречающихся в природе и технике, выделяются следующие их типы: волны на поверхности жидкости, упругие и электромагнитные волны. Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде. Упругие волны бывают продольные и попереч­ные. В продольных волнах частицы среды колеблются в направлении распространения волны, в поперечных — в плоскостях, перпендикулярных направлению распростране­ния волны.

Продольные волны могут возбуждаться в средах, в которых возникают упругие силы при деформации сжатия и растяжения, т. е. твердых, жидких и газообразных телах. Поперечные волны могут возбуждаться в среде, в которой возникают упругие силы при деформации сдвига, т. е. в твердых телах; в жидкостях и газах возникают только продольные волны, а в твердых телах — как продольные, так и поперечные.

Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими. На рис. 220 представлена гармоническая поперечная волна, распространяющаяся со скоростью v вдоль оси х, т. е. приведена зависимость между смещением x частиц среды, участвующих в волновом процессе, и расстоянием х этих частиц (например, частицы В) от источника колебаний О для какого-то фиксированного момента времени t. Приведенный график функции x (x, t)похож на график гармонического колебания, однако они различны по существу. График волны дает зависимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени, а график колебаний — зависимость смещения данной частицы от времени.

Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны l (рис. 220). Длина волны равна тому расстоянию, на которое распространяется определенная фаза колебания за период, т. е.

или, учитывая, что T = 1/ n, где n — частота колебаний,

Если рассмотреть волновой процесс подробнее, то ясно, что колеблются не только частицы, расположенные вдоль оси х, а колеблется совокупность частиц, расположенных в некотором объеме, т. е. волна, распространяясь от источника колебаний, охва­тывает все новые и новые области пространства. Геометрическое место точек, до которых доходят колебания к моменту времени t, называется волновым фронтом. Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновых поверхностей можно провести бесчисленное множество, а волновой фронт в каждый момент времени — один. Волновой фронт также является волновой поверхностью. Волновые поверхности могут быть любой формы, а в про­стейшем случае они представляют собой совокупность плоскостей, параллельных друг другу, или совокупность концентрических сфер. Соответственно волна называется плоской или сферической.

§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение

Бегущими волнами называются волны, которые переносят в пространстве энергию. Перенос энергии волнами количественно характеризуется вектором плотности потока энергии. Этот вектор для упругих волн называется вектором Умова (по имени русского ученого Н. А. Умова (1846—1915), решившего задачу о распространении энергии в среде). Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно направлению распространения волны.

Для вывода уравнения бегущей волны — зависимости смещения колеблющейся частицы от координат и времени — рассмотрим плоскую волну, предполагая, что колебания носят гармонический характер, а ось х совпадает с направлением распрост­ранения волны (рис. 220). В данном случае волновые поверхности перпендикулярны оси х, а так как все точки волновой поверхности колеблются одинаково, то сме­щение x будет зависеть только от x и t, т. е. x = x (x, t).

На рис. 220 рассмотрим некоторую частицу В среды, находящуюся от источника колебаний О на расстоянии х. Если колебания точек, лежащих в плоскости х= 0,описываются функцией x (0, t) = A cos wt, то частица В среды колеблется по тому же закону, но ее колебания будут отставать по времени от колебаний источника на t, так как для прохождения волной расстояния х требуется время t = x / v, где v — скорость распространения волны. Тогда уравнение колебаний частиц, лежащих в плоскости х, имеет вид

(154.1)

откуда следует, что x (х, t) является не только периодической функцией времени, но и периодической функцией координаты х. Уравнение (154.1) есть уравнение бегущей волны. Если плоская волна распространяется в противоположном направлении, то

В общем случае уравнение плоской волны, распространяющейся вдоль положитель­ного направления оси х в среде, не поглощающей энергию, имеет вид

(154.2)

где А = const амплитуда волны, w — циклическая частота, j 0 начальная фаза вол­ны, определяемая в общем случае выбором начал отсчета х и t, [ w (t—x/v)+ j 0] фаза плоской волны.

Для характеристики волн используется волновое число

(154.3)

Учитывая (154.3), уравнению (154.2) можно придать вид

(154.4)

Уравнение волны, распространяющейся вдоль отрицательного направления оси х, отличается от (154.4) только знаком члена kx.

Основываясь на формуле Эйлера (140.7), уравнение плоской волны можно записать в виде

где физический смысл имеет лишь действительная часть (см. § 140). Предположим, что при волновом процессе фаза постоянна, т. е.

(154.5)

Продифференцировав выражение (154.5) и сократив на w, получим откуда

(154.6)

Следовательно, скорость v распространения волны в уравнении (154.6) есть не что иное, как скорость перемещения фазы волны, и ее называют фазовой скоростью.

Повторяя ход рассуждений для плоской волны, можно доказать, что уравнение сферической волны — волны, волновые поверхности которой имеют вид концентричес­ких сфер, записывается как

(154.7)

где r — расстояние от центра волны до рассматриваемой точки среды. В случае сферической волны даже в среде, не поглощающей энергию, амплитуда колебаний не остается постоянной, а убывает с расстоянием по закону 1/ r. Уравнение (154.7) справед­ливо лишь для r, значительно превышающих размеры источника (тогда источник колебаний можно считать точечным).

Из выражения (154.3) вытекает, что фазовая скорость

(154.8)

Если фазовая скорость воли в среде зависит от их частоты, то это явление называют дисперсией волн, а среда, в которой наблюдается дисперсия волн, называется диспергирующей средой.

Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением — дифференциальным уравнением в частных производных

или

(154.9)

где v — фазовая скорость, — оператор Лапласа. Решением урав­нения (154.9) является уравнение любой волны. Соответствующей подстановкой можно убедиться, что уравнению (154.9) удовлетворяют, в частности, плоская волна (см. (154.2)) и сферическая волна (см. (154.7)). Для плоской волны, распространяющейся вдоль оси х, волновое уравнение имеет вид

(154.10)

§ 155. Принцип суперпозиции. Групповая скорость

Если среда, в которой распространяется одновременно несколько волн, линейна, т. е. ее свойства не изменяются под действием возмущений, создаваемых волной, то к ним применим принцип суперпозиции (наложения) волн: при распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов.

Исходя из принципа суперпозиции и разложения Фурье (см. (144.5)) любая волна может быть представлена в виде суммы гармонических волн, т. е. в виде волнового пакета, или группы волн. Волновым пакетом называется суперпозиция волн, мало отличающихся друг от друга по частоте, занимающая в каждый момент времени ограниченную область пространства.

«Сконструируем» простейший волновой пакет из двух распространяющихся вдоль положительного направления оси х гармонических волн с одинаковыми амплитудами, близкими частотами и волновыми числами, причем d w << w и d k<<k. Тогда

Эта волна отличается от гармонической тем, что ее амплитуда

есть медленно изменяющаяся функция координаты х и времени t.

За скорость распространения этой негармонической волны (волнового пакета) принимают скорость перемещения максимума амплитуды волны, рассматривая тем самым максимум в качестве центра волнового пакета. При условии, что t d w —x d k = const, получим

(155.1)

Скорость и есть групповая скорость. Ее можно определить как скорость движения группы волн, образующих в каждый момент времени локализованный в пространстве волновой пакет. Выражение (155.1) получено для волнового пакета из двух составля­ющих, однако можно доказать, что оно справедливо в самом общем случае.

Рассмотрим связь между групповой (см. (155.1)) и фазовой v=w /k (см. (154.8)) скоростями. Учитывая, что k= 2 p/l (см. (154.3)), получим

или

(155.2)

Из формулы (155.2) вытекает, что u может быть как меньше, так и больше v в зависи­мости от знака d v/ d l. В недиспергирующей среде d v/ d l= 0 и групповая скорость совпадает с фазовой.

Понятие групповой скорости очень важно, так как именно она фигурирует при измерении дальности в радиолокации, в системах управления космическими объектами и т. д. В теории относительности доказывается, что групповая скорость u << с, в то время как для фазовой скорости ограничений не существует.

§ 156. Интерференция волн

Согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов связывают с понятием когерентности. Волны называются когерент­ными, если разность их фаз остается постоянной во времени. Очевидно, что когерент­ными могут быть лишь волны, имеющие одинаковую частоту. При наложении в про­странстве двух (или нескольких) когерентных волн в разных его точках получается усиление или ослабление результирующей волны в зависимости от соотношения между фазами этих воли. Это явление называется интерференцией волн.

Рассмотрим наложение двух когерентных сферических волн, возбуждаемых точеч­ными источниками S 1 и S 2 (рис. 221), колеблющимися с одинаковыми амплитудой А 0 и частотой w и постоянной разностью фаз. Согласно (154.7),

где r 1 и r 2 — расстояния от источников волн до рассматриваемой точки В, k — волно­вое число, j 1 и j 2 — начальные фазы обеих накладывающихся сферических волн. Амплитуда результирующей волны в точке В по (144.2) равна

Так как для когерентных источников разность начальных фаз (j 1j 2) = const, то результат наложения двух волн в различных точках зависит от величины D = r 1r 2, называемой разностью хода волн.

В точках, где

(156.1)

наблюдается интерференционный максимум: амплитуда результирующего колебания А=A 0 /r 1 + A 0 /r 2. В точках, где

(156.2)

наблюдается интерференционный минимум: амплитуда результирующего колебания А=|A 0 /r 1+ A 0 /r 2 |; m =0, 1, 2,..., называется соответственно порядком нтерференционного максимума или минимума.

Условия (156.1) в (156.2) сводятся к тому, что

(156.3)

Выражение (156.3) представляет собой уравнение гиперболы с фокусами в точках S 1 и S 2. Следовательно, геометрическое место точек, в которых наблюдается усиление или ослабление результирующего колебания, представляет собой семейство гипербол (рис. 221), отвечающих условию (j 1j 2)=0. Между двумя интерференционными мак­симумами (на рис. 221 сплошные линии) находятся интерференционные минимумы (на рис. 221 штриховые линии).

§ 157. Стоячие волны

Особым случаем интерференции являются стоячее волны — это волны, образующиеся при наложении двух бегущих воли, распространяющихся навстречу друг другу с оди­наковыми частотами и амплитудами, а в случае поперечных волн и одинаковой поляризацией.

Для вывода уравнения стоячей волны предположим, что две плоские волны рас­пространяются навстречу друг другу вдоль оси х в среде без затухания, причем обе волны характеризуются одинаковыми амплитудами и частотами. Кроме того, начало координат выберем в точке, в которой обе волны имеют одинаковую начальную фазу, а отсчет времени начнем с момента, когда начальные фазы обеих волн равны нулю. Тогда соответственно уравнения волны, распространяющейся вдоль положительного направления оси х, и волны, распространяющейся ей навстречу, будут иметь вид

(157.1)

Сложив эти уравнения и учитывая, что k=2v/X (см. (154.3)), получим уравнение стоячей волны:

(157.2)

Из уравнения стоячей волны (157.2) вытекает, что в каждой точке этой волны происходят колебания той же частоты w с амплитудой A ст =| 2 А cos(2 pх/l)|, зависящей от координаты х рассматриваемой точки.

В точках среды, где

(157.3)

амплитуда колебаний достигает максимального значения, равного 2 А. В точках среды, где

(157.4)

амплитуда колебаний обращается в нуль. Точки, в которых амплитуда колебаний максимальна (А ст = 2 А), называются пучностями стоячей волны, а точки, в которых амплитуда колебаний равна нулю (A ст=0), называются узлами стоячей волны. Точки среды, находящиеся в узлах, колебаний не совершают.

Из выражений (157.3) и (157.4) получим соответственно координаты пучностей и узлов:

(157.5)

(157.6)

Из формул (157.5) и (157.6) следует, что расстояния между двумя соседними пучностями и двумя соседними узлами одинаковы и равны l /2. Расстояние между сосед­ними пучностью и узлом стоячей волны равно l /4.

В отличие от бегущей волны, все точки которой совершают колебания с одинаковой амплитудой, но с запаздыванием по фазе (в уравнении (157.1) бегущей волны фаза колебаний зависит от координаты х рассматриваемой точки), все точки стоячей волны между двумя узлами колеблются с разными амплитудами, но с одинаковыми фазами (в уравнении (157.2) стоячей волны аргумент косинуса не зависит от х). При переходе через узел множитель 2 A cos(2 px/l) меняет свой знак, поэтому фаза колебаний по разные стороны от узла отличается на p, т. е. точки, лежащие по разные стороны от узла, колеблются в противофазе.

Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн. Например, если конец веревки закрепить неподвижно, то отраженная в месте закрепления веревки волна будет интерферировать с бегущей волной и образует стоячую волну. На границе, где происходит отражение волны, в данном случае возникает узел. Будет ли на границе отражения узел или пучность, зависит от соот­ношения плотностей сред. Если среда, от которой происходит отражение, менее плотная, то в месте отражения возникает пучность (рис. 222, а), если более плот­ная — узел (рис. 222, б). Образование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы происходит сложение колебаний с противоположными фазами, в результате чего получается узел. Если же волна отражается от менее плотной среды, то изменения фазы не происходит и у гра­ницы колебания складываются с одинаковыми фазами — образуется пучность.

Если рассматривать бегущую волну, то в направлении ее распространения перено­сится энергия колебательного движения. В случае же стоячей волны переноса энергии нет, так как падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. Поэтому полная энергия результирующей стоячей волны, заключенной между узловыми точками, остается постоянной. Лишь в пределах расстояний, равных половине длины волны, происходят взаимные превра­щения кинетической энергии в потенциальную и обратно.




Поделиться с друзьями:


Дата добавления: 2014-11-07; Просмотров: 712; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.