Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

КУРС ФИЗИКИ 50 страница




Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц оно пренебрежимо мало и, по-видимому, в процессах микромира несущественно.

Сильное взаимодействие примерно в 100 раз превосходит электромагнитное и в 1014 раз — слабое.Чем сильнее взаимодействие, тем с большей интенсивностью протекают процессы. Так, время жизни частиц, называемых резонансами, распад кото­рых описывается сильным взаимодействием, составляет примерно 10–23 с; время жизни p0-мезона, за распад которого ответственно электромагнитное взаимодействие, составляет 10–16 с; для распадов, за которые ответственно слабое взаимодействие, характерны времена жизни 10–10—10–8 с. Как сильное, так и слабое взаимодейст­вия — короткодействующие. Радиус действия сильного взаимодействия составляет примерно 10–15 м, слабого — не превышает 10–19 м. Радиус действия электромагнит­ного взаимодействия практически не ограничен.

 

Элементарные частицы принято делить на три группы:

1) фотоны; эта группа состоит всего лишь из одной частицы — фотона — кванта электромагнитного излучения;

2) лептоны (от греч. «лептос» — легкий), участвующие только в электромагнитном и слабом взаимодействиях. К лептонам относятся электронное и мюонное нейтрино, электрон, мюон и открытый в 1975 г. тяжелый лептон — t-лептон, или таон, с массой примерно 3487 me, а также соответствующие им античастицы. Название лептонов связано с тем, что массы первых известных лептонов были меньше масс всех других частиц. К лептонам относится также таонное нейтрино, существование которого в последнее время также установлено;

3) адроны (от греч. «адрос» — крупный, сильный). Адроны обладают сильным взаимодействием наряду с электромагнитным и слабым. Из рассмотренных выше частиц к ним относятся протон, нейтрон, пионы и каоны.

Для всех типов взаимодействия элементарных частиц выполняются законы со­хранения энергии, импульса, момента импульса и электрического заряда.

Характерным признаком сильных взаимодействий является зарядовая независи­мость ядерных сил. Как уже указывалось (см. § 254), ядерные силы, действующие между парами р—р, п—п или р—п, одинаковы. Поэтому если бы в ядре осуществлялось только сильное взаимодействие, то зарядовая независимость ядерных сил привела бы к одинаковым значениям масс нуклонов (протонов и нейтронов) и всех p-мезонов. Различие в массах нуклонов и соответственно p-мезонов обусловлено электромагнит­ным взаимодействием: энергии взаимодействующих заряженных и нейтральных частиц различны, поэтому и массы заряженных и нейтральных частиц оказываются неодина­ковыми.

Зарядовая независимость в сильных взаимодействиях позволяет близкие по массе частицы рассматривать как различные зарядовые состояния одной и той же частицы. Так, нуклон образует дублет (нейтрон, протон), p-мезоны—триплет (p+, p, p0) и т. д. Подобные группы «похожих» элементарных частиц, одинаковым образом участвующих в сильном взаимодействии, имеющие близкие массы и отличающиеся зарядами, называют изотопическими мультиплетами. Каждый изотопический мультиплет характеризуют изотопическим спином (изоспином) — одной из внутренних харак­теристик адронов, определяющей число (n) частиц в изотопическом мультиплете: n =2 I +1. Тогда изоспин нуклона I= ½(число членов в изотопическом мультиплете нуклона равно двум), изоспин пиона I =1 (в пионном мультиплете n =3) и т. д. Изотопический спин характеризует только число членов в изотопическом мультиплете и никакого отношения к рассматриваемому ранее спину не имеет.

Исследования показали, что во всех процессах, связанных с превращениями элемен­тарных частиц, обусловленных зарядово-независимыми сильными взаимодействиями, выполняется закон сохранения изотопического спина. Для электромагнитных и слабых взаимодействий этот закон не выполняется. Так как электрон, позитрон, фотон, мюоны, нейтрино и антинейтрино в сильных взаимодействиях участия не принимают, то им изотопический спин не приписывается.

§ 273. Частицы и античастицы

Гипотеза об античастице впервые возникла в 1928 г., когда П. Дирак на основе релятивистского волнового уравнения предсказал существование позитрона (см. § 263), обнаруженного спустя четыре года К. Андерсеном в составе космического излучения. Электрон и позитрон не являются единственной парой частица — античастица. На основе релятивистской квантовой теории пришли к заключению, что для каждой элементарной частицы должна существовать античастица (принцип зарядового сопряже­ния). Эксперименты показывают, что за немногим исключением (например, фотона и p0-мезона), действительно, каждой частице соответствует античастица.

Из общих положений квантовой теории следует, что частицы и античастицы должны иметь одинаковые массы, одинаковые времена жизни в вакууме, одинаковые по модулю, но противоположные по знаку электрические заряды (и магнитные момен­ты), одинаковые спины и изотопические спины, а также одинаковые остальные кван­товые числа, приписываемые элементарным частицам для описания закономерностей их взаимодействия (лептонное число (см. § 275), барионное число (см. § 275), стран­ность (см. § 274), очарование (см. § 275) и т. д.). До 1956 г. считалось, что имеется полная симметрия между частицами и античастицами, т. е. если какой-то процесс идет между частицами, то должен существовать точно такой же (с теми же характеристи­ками) процесс между античастицами. Однако в 1956 г. доказано, что подобная симмет­рия характерна только для сильного и электромагнитного взаимодействий и нарушает­ся для слабого.

Согласно теории Дирака, столкновение частицы и античастицы должно приводить к их взаимной аннигиляции, в результате которой возникают другие элементарные частицы или фотоны. Примером тому является рассмотренная реакция (263.3) ан­нигиляции пары электрон — позитрон ( e + е ®2 g).

После того как предсказанное теоретически существование позитрона было подтве­рждено экспериментально, возник вопрос о существовании антипротона и антинейт­рона. Расчеты показывают, что для создания пары частица — античастица надо затра­тить энергию, превышающую удвоенную энергию покоя пары, поскольку частицам необходимо сообщить весьма значительную кинетическую энергию. Для создания -пары необходима энергия примерно 4,4 ГэВ. Антипротон был действительно обнаружен экспериментально (1955) при рассеянии протонов (ускоренных на крупней­шем в то время синхрофазотроне Калифорнийского университета) на нуклонах ядер мишени (мишенью служила медь), в результате которого рождалась пара .

Антипротон отличается от протона знаками электрического заряда и собственного магнитного момента. Антипротон может аннигилировать не только с протоном, но и с нейтроном:

(273.1)

(273.2)

(273.3)

Годом позже (1956) на том же ускорителе удалось получить антинейтрон () и осуществить его аннигиляцию. Антинейтроны возникали в результате перезарядки антипротонов при их движении через вещество. Реакция перезарядки состоит в об­мене зарядов между нуклоном и антинуклоном и может протекать по схемам

(273.4)

(273.5)

Антинейтрон отличается от нейтрона n знаком собственного магнитного момен­та. Если антипротоны — стабильные частицы, то свободный антинейтрон, если он не испытывает аннигиляции, в конце концов претерпевает распад по схеме

Античастицы были найдены также для p+-мезона, каонов и гиперонов (см. § 274). Однако существуют частицы, которые античастиц не имеют, — это так называемые истинно нейтральные частицы. К ним относятся фотон, p0-мезон и h-мезон (его масса равна 1074 me, время жизни 7×10–19 с; распадается с образованием p-мезонов и g-квантов). Истинно нейтральные частицы не способны к аннигиляции, но испытыва­ют взаимные превращения, являющиеся фундаментальным свойством всех элементар­ных частиц. Можно сказать, что каждая из истинно нейтральных частиц тождественна со своей античастицей.

Большой интерес и серьезные трудности представляли доказательство существова­ния антинейтрино и ответ на вопрос, являются ли нейтрино и антинейтрино тождест­венными или различными частицами. Используя мощные потоки антинейтрино, полу­чаемые в реакторах (осколки деления тяжелых ядер испытывают b-распад и, согласно (258.1), испускают антинейтрино), американские физики Ф. Рейнес и К. Коуэн (1956) надежно зафиксировали реакцию захвата электронного антинейтрино протоном:

(273.6)

Аналогично зафиксирована реакция захвата электронного нейтрино нейтроном:

(273.7)

Таким образом, реакции (273.6) и (273.7) явились, с одной стороны, бесспорным доказательством того, что и , — реальные частицы, а не фиктивные понятия, введенные лишь для объяснения b-распада, а с другой — подтвердили вывод о том, что и — различные частицы.

В дальнейшем эксперименты по рождению и поглощению мюонных нейтрино показали, что и и — различные частицы. Также доказано, что пара , — различ­ные частицы, а пара , не тождественна паре , . Согласно идее Б. М. Понтекорво (см. § 271), осуществлялась реакция захвата мюонного нейтрино (получались при распаде p+®m++nm (271.1)) нейтронами и наблюдались возникающие частицы. Оказа­лось, что реакция (273.7) не идет, а захват происходит по схеме

т. е. вместо электронов в реакции рождались m-мюоны. Это и подтверждало различие между и .

По современным представлениям, нейтрино и антинейтрино отличаются друг от друга одной из квантовых характеристик состояния элементарной частицы — спиральностью, определяемой как проекция спина частицы на направление ее движения (на импульс). Для объяснения экспериментальных данных предполагают, что у нейтрино спин s ориентирован антипараллельно импульсу р, т. е. направления р и s образуют левый винт и нейтрино обладает левой спиральностью (рис. 349, а). У антинейтрино направления р и s образуют правый винт, т. е. антинейтрино обладает правой спиральностью (рис. 349, б). Это свойство справедливо в равной мере как для электронного, так и для мюонного нейтрино (антинейтрино).

Для того чтобы спиральность могла быть использована в качестве характеристики нейтрино (антинейтрино), масса нейтрино должна приниматься равной нулю. Введение спиральности позволило объяснить, например, нарушение закона сохранения четности (см. § 274) при слабых взаимодействиях, вызывающих распад элементарных частиц и b-распад. Taк, m-мюону приписывают правую спиральность, m+-мюону — левую.

После открытия столь большого числа античастиц возникла новая задача — найти антиядра, иными словами, доказать существование антивещества, которое построено из античастиц, так же как вещество из частиц. Антиядра действительно были об­наружены. Первое антиядро — антидейтрон (связанное состояние и ) — было полу­чено в 1965 г. группой американских физиков под руководством Л. Ледермана. Впос­ледствии на Серпуховском ускорителе были синтезированы ядра антигелия (1970) и антитрития (1973).

Следует, однако, отметить, что возможность аннигиляции при встрече с частицами не позволяет античастицам длительное время существовать среди частиц. Поэтому для устойчивого состояния антивещества оно должно быть от вещества изолировано. Если бы вблизи известной нам части Вселенной существовало скопление антивещества, то должно было бы наблюдаться мощное аннигиляционное излучение (взрывы с выделе­нием огромных количеств энергии). Однако пока астрофизики ничего подобного не зарегистрировали. Исследования, проводимые для поиска антиядер (в конечном счете антиматерии), и достигнутые в этом направлении первые успехи имеют фундаменталь­ное значение для дальнейшего познания строения вещества.

§ 274. Гипероны. Странность и четность элементарных частиц

В ядерных фотоэмульсиях (конец 40-х годов) и на ускорителях заряженных частиц (50-е годы) обнаружены тяжелые нестабильные элементарные частицы массой, большей массы нуклона, названные гиперонами (от греч.hyper — сверх, выше). Известно неско­лько типов гиперонов: лямбда (), сигма (, , ), кси (, ) и омега (). Существование -гиперона следовало из предложенной (1961) М. Гелл-Манном (р. 1929) (американский физик; Нобелевская премия 1969 г.) схемы для классификации сильно взаимодействующих элементарных частиц. Все известные в то время частицы укладывались в эту схему, но в ней оставалось одно незаполненное место, которое должна была занять отрицательно заряженная частица массой, равной примерно 3284 тe. В результате специально поставленного эксперимента был действительно обнаружен -гиперон массой 3284 тe.

Гипероны имеют массы в пределах (2183—3273) тe, их спин равен ½ (только спин -гиперона равен 3/2), время жизни приблизительно 10–10 с (для -гиперона время жизни равно приблизительно 10–20 с). Они участвуют в сильных взаимодействиях, т. е. принадлежат к группе адронов. Гипероны распадаются на нуклоны и легкие частицы (p-мезоны, электроны, нейтрино и g-кванты).

Детальное исследование рождения и превращения гиперонов привело к установле­нию новой квантовой характеристики элементарных частиц — так называемой стран­ности. Ее введение оказалось необходимым для объяснения ряда парадоксальных (с точки зрения существовавших представлений) свойств этих частиц. Дело в том, что гипероны должны были, как представлялось, обладать временем жизни примерно 10–23 с, что в 1013 раз (!) меньше установленного на опыте. Подобные времена жизни можно объяснить лишь тем, что распад гиперонов происходит в результате слабого взаимодействия. Кроме того, оказалось, что всякий раз гиперон рождается в паре с К -мезоном. Например, в реакции

(274.1)

с -гипероном всегда рождается К 0 - мезон, в поведении которого обнаруживаются те же особенности, что и у гиперона. Распад же -гиперона происходит по схеме

(274.2)

Особенности поведения гиперонов и К -мезонов были объяснены в 1955 г. М. Гелл-Манном с помощью квантового числа — странности S, которая сохраняется в процессах сильного и электромагнитного взаимодействий. Если приписать каонам S= 1, а - и S-гиперонам S= –1 и считать, что у нуклонов и p-мезонов S= 0, то сохранение суммарной странности частиц в сильном взаимодействии объясняеткаксовместное рождение -гиперона с К 0-мезоном, так и невозможность распада частиц с не равной нулю странностью за счет сильного взаимодействия на частицы, стран­ность которых равна нулю. Реакция (274.2) идет с нарушением странности, поэтому она не может происходить в результате сильного взаимодействия. X-Гиперонам, которые рождаются совместно с двумя каонами, приписывают S= –2; W-гиперонам — S=– 3.

Из закона сохранения странности следовало существование частиц, таких, как -мезон, -, -гипероны, которые впоследствии были обнаружены эксперименталь­но. Каждый гиперон имеет свою античастицу.

Элементарным частицам приписывают еще одну квантово-механическую величи­ну — четность Р квантовое число, характеризующее симметрию волновой функции элементарной частицы (или системы элементарных частиц) относительно зеркального отражения. Если при зеркальном отражении волновая функция частицы не меняет знака, то четность частицы Р=+ 1 (четность положительная), если меняет знак, то четность частицы Р= –1 (отрицательная).

Из квантовой механики вытекает закон сохранения четности, согласно которому при всех превращениях, претерпеваемых системой частиц, четность состояния не изменяет­ся. Сохранение четности связано со свойством зеркальной симметрии пространства и указывает на инвариантность законов природы по отношению к замене правого левым, и наоборот. Однако исследования распадов К -мезонов привели американских физиков Т. Ли и Ч. Янга (1956 г.; Нобелевская премия 1957 г.) к выводу о том, что в слабых взаимодействиях закон сохранения четности может нарушаться. Целый ряд опытов подтвердили это предсказание. Таким образом, закон сохранения четности, как и закон сохранения странности, выполняется только при сильных и электромагнитных взаимодействиях.

 

§ 275. Классификация элементарных частиц. Кварки

В многообразии элементарных частиц, известных к настоящему времени, обнаружива­ется более или менее стройная система классификации. Для ее пояснения в табл. 8 представлены основные характеристики рассмотренных выше элементарных частиц. Характеристики античастиц не приводятся, поскольку, как указывалось в § 273, модули зарядов и странности, массы, спины, изотопические спины и время жизни частиц и их античастиц одинаковы, они различаются лишь знаками зарядов и стран­ности, а также знаками других величии, характеризующих их электрические (а следова­тельно, и магнитные) свойства. В таблице нет также античастиц фотона и p0 - и h0-мезонов, так как антифотон и антипи-ноль- и антиэта-ноль-мезоны тождественны с фотоном и p0 - и h0-мезонами.

В табл. 8 элементарные частицы объединены в три группы (см. § 272): фотоны, лептоны и адроны. Элементарные частицы, отнесенные к каждой из этих групп, обладают общими свойствами и характеристиками, которые отличают их от частиц другой группы.

К группе фотонов относится единственная частица — фотон, который переносит электромагнитное взаимодействие. В электромагнитном взаимодействии участвуют в той или иной степени все частицы, как заряженные, так и нейтральные (кроме нейтрино).

К группе лептонов относятся электрон, мюон, таон, соответствующие им нейтрино, а также их античастицы. Все лептоны имеют спин, равный ½, и, следовательно, являются фермионами (см. § 226), подчиняясь статистике Ферми — Дирака (см. § 235).

Таблица 8

Поскольку лептоны в сильных взаимодействиях не участвуют, изотопический спин им не приписывается. Странность лептонов равна нулю.

Элементарным частицам, относящимся к труппе лептонов, приписывают так назы­ваемое лептонное число (лептонный заряд) L. Обычно принимают, что L =+1 для лептонов (е , m , t , ne, nm, nt), L =–1 для антилептонов (е +, m +, t +, , , ) и L =0 для всех остальных элементарных частиц. Введение L позволяет сформулировать закон сохрания лептонного числа: в замкнутой системе при всех без исключения процессах взаимопревращаемости элементарных частиц лептонное число сохраняется.

Теперь понятно, почему при распаде (258.1) нейтральная частица названа антинейт­рино, а при распаде (263.1) — нейтрино. Taк как у электрона и нейтрино L = +1, а у позитрона и антинейтрино L = –1, то закон сохранения лептонного числа выполня­ется лишь при условии, что антинейтрино возникает вместе с электроном, а нейтри­но — с позитроном.

Основную часть элементарных частиц составляют адроны. К группе адронов от­носятся пионы, каоны, h-мезон, нуклоны, гипероны, а также их античастицы (в табл. 8 приведены не все адроны).

Адронам приписывают барионное число (барионный заряд) В. Адроны с В= 0образуют подгруппу мезонов (пионы, каоны, h-мезон), а адроны с В = +1 образуют подгруппу барионов (от греч. «барис» — тяжелый; сюда относятся нуклоны и гипе­роны). Для лептонов и фотона В= 0. Если принять для барионов В=+ 1, для антибарионов (антинуклоны, автигипероны) В =–1, а для всех остальных частиц В =0, то можно сформулировать закон сохранения барионного числа: в замкнутой системе при всех процессах взаимопревращаемости элементарных частиц барионное число сохраня­ется.

Из закона сохранения барионного числа следует, что при распаде бариона наряду с другими частицами обязательно образуется барион. Примерами сохранения барион­ного числа являются реакции (273.1)—(273.5). Барионы имеют спин, равный ½ (только спин W-гиперона равен 3/2), т. е. барионы, как и лептоны, являются фермионами.

Странность S для различных частиц подгруппы барионов имеет разные значения (см. табл. 8).

Мезоны имеют спин, равный нулю, и, следовательно, являются бозонами (см. § 226), подчиняясь статистике Бозе — Эйнштейна (см. § 235). Для мезонов лептонные и барионные числа равны нулю. Из подгруппы мезонов только каоны обладают S =+1, а пионы и h-мезоны имеют нулевую странность.

Подчеркнем еще раз, что для процессов взаимопревращаемости элементарных ча­стиц, обусловленных сильными взаимодействиями, выполняются все законы сохранения (энергии, импульса, момента импульса, зарядов (электрического, лептонного и барион­ного), изоспина, странности и четности). В процессах, обусловленных слабыми взаимо­действиями, не сохраняются только изоспин, странность и четность.

В последние годы увеличение числа элементарных частиц происходит в основном вследствие расширения группы адронов.

Поэтому развитие работ по их классификации все время сопровождалось поисками новых, более фундаментальных частиц, которые могли бы служить базисом для построения всех адронов. Гипотеза о существовании таких частиц, названных кварками, была высказана независимо друг от друга (1964) австрийским физиком Дж. Цвейгом (р. 1937) и Гелл-Манном.

Название «кварк» заимствовано из романа ирландского писателя Дж. Джойса «Поминки по Финнегану» (герою снится сон, в котором чайки кричат: «Три кварка для мастера Марка»).

Согласно модели Гелл-Манна — Цвейга, все известные в то время адроны можно было построить, постулировав существование трех типов кварков (и, d, s) и соответст­вующих антикварков (, , ), если им приписать характеристики, указанные в табл. 9 (в том числе дробные электрические и барионные заряды). Самое удивительное (почти невероятное) свойство кварков связано с их электрическим зарядом, поскольку еще никто не находил частицы с дробным значением элементарного электрического заряда. Спин кварка равен ½, поскольку только из фермионов можно «сконструировать» как фермионы (нечетное число фермионов), так и бозоны (четное число фермионов).

Адроны строятся из кварков следующим образом: мезоны состоят из пары кварк — антикварк, барионы — из трех кварков (антибарион — из трех антикварков). Так, например, пион p+ имеет кварковую структуру , пион p, каон К+, протон — uud, нейтрон — udd, S+-гиперон — uus, S0-гиперон — uds и т. д.

Во избежание трудностей со статистикой (некоторые бариоиы, например W-гиперон, состоят из трех одинаковых кварков (sss), что запрещено принципом Паули; см. § 227) на данном этапе предполагают, что каждый кварк (антикварк) обладает специфи­ческой квантовой характеристикой — —цветом: «желтым», «синим» и «красным». Тогда, если кварки имеют неодинаковую «окраску», принцип Паули не нарушается.

Углубленное изучение модели Гелл-Манна — Цвейга, а также открытие в 1974 г. истинно нейтрального джей-пси-мезона (J/ Y) массой около 6000 me со временем жизни примерно 10–20 с и спином, равным единице, привело к введению нового кварка — так называемого с -кварка и новой сохраняющейся величины — «очарования» (от англ. charm).

Подобно странности и четности, очарование сохраняется в сильных и электромаг­нитных взаимодействиях, но не сохраняется в слабых. Закон сохранения очарования объясняет относительно долгое время жизни J/ Y-мезона. Основные характеристики с -кварка приведены в табл. 9.

Таблица 9




Поделиться с друзьями:


Дата добавления: 2014-11-07; Просмотров: 368; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.