Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Техносфера




Рост техносферы в XX веке

Показатель Начало века Конец века
Валовой мировой продукт, млрддолл./год    
Энергетическая мощность техносферы, ТВт    
Численность населения, млрд человек 1,6 6,0
Потребление пресной воды, км/год    
Потребление первичной продукции биоты, %    
Площадь лесопокрытых территорий, млн км2 57,5 50,0
Рост площади пустынь, млн км2 - 1,7
Сокращение числа видов, % - -20
Площадь суши, занятая техносферой, %    

 

В первой половине XX в. была уверенность, что многие проблемы разрешатся с помощью техники. В течение века было зафиксировано множество открытий и изобретений, сменилось несколько поколений техники. Но убавилось ли у человека проблем?

Техногенез, как и его инициатор - человек, стремится к занятию всевозможных «экологических ниш» и поэтому оказывает сильное влияние на экологию биосферы, вытесняя природные экологические системы и процессы. Смена этапов техногенеза, основных типов технологий происходит неизмеримо быстрее, чем сменяются «технологии» биотического круговорота в эволюции биосферы. Огромный технический потенциал человечества сам по себе обладает внутренней неустойчивостью. Из-за высокой концентрации

в пределах биосферы и среды человека источников риска (все виды вооружений, отравляющие вещества и ядерное топливо) этот потенциал не только угрожает биосфере, но и включает потенциал самоуничтожения. Эта угроза не так уж легко осознается, поскольку в психологии масс она маскируется положительными результатами социального прогресса во второй половине столетия, когда возросли доходы населения, более эффективными стали системы здравоохранения и образования, улучшилось питание людей, увеличилась продолжительность жизни.

В XX в. техногенез приобрел глобальный характер и качественно новую форму, способствуя быстрому расширению и распространению техносферы - совокупного результата хозяйственной деятельности человека.

Объем и состав техносферы. Мировое хозяйство можно рассматривать как видовую реализованную экологическую нишу человечества. По многим пространственным и потоковым параметрам она совпадает с биосферой, экологическая емкость которой ограниченна. Поэтому неизбежны конкурентные отношения между активными элементами техногенной среды и биосферы, между общественным производством и планетарной биотой. Хотя эти отношения намного сложнее, чем межвидовые взаимоотношения в природе, многие их черты выглядят как конкурентное вытеснение биосферы.

Техносфера - это глобальная совокупность орудий, объектов, материальных процессов и продуктов общественного производства. Техносферу можно определить также как пространство геосфер Земли, находящееся под воздействием производственной деятельности человека и занятое ее продуктами.

В XX в. человек раздвинул границы техносферы далеко за пределы биосферы - в ближний и дальний космос, в глубины земной коры, под дно океана, в субмолекулярный микромир, создав особую материально-энергетическую оболочку планеты. Она охватывает и пронизывает всю биосферу, особенно сильно на суше, и придает значительной части поверхности планеты совершенно особый облик. Вряд ли остались участки живой природы, которые не испытали бы на себе действие техногенеза. Мировое хозяйство стало не только глобальной технико-экономической, но и глобальной эколого-географической системой.

По различным оценкам, общая масса техносферы в настоящее время составляет от 10 до 20 тыс. Гт. (Это больше биомассы живого вещества всей биосферы! - см. §. 3.4). Основную ее часть образуют скопления горной массы, отработанных руд, перемещенных грунтов, производственных отходов, оставленные сооружения, развалины и т.п., т.е. накопившееся за всю историю человечества техногенное вещество. «Действующая» Техносфера, т.е. используемые людьми в настоящее время основные производственные фонды, сооружения, орудия производства, предметы потребления, составляет малую часть общей массы - всего лишь (!) 150 - 200 Гт. В них, в свою очередь, преобладают капитальные сооружения со сроками амортизации во многие десятки лет. Наиболее активная часть техносферы, т.е. вся совокупность орудий производства, машин, механизмов, агрегатов, реакторов, действующих коммуникаций и т.п., имеет массу порядка 10-15 Гт и в настоящее время обновляется за средний срок порядка 10 лет.

Техногенный материальный баланс. На рис. 5.1 представлена количественная схема современного техногенного круговорота веществ. Из 125 Гт ископаемых материалов и биомассы, мобилизуемых за год мировой экономикой, только 9,4 Гт (7,5%) преобразуется в материальную продукцию в процессе производства. Более 80% этого количества вновь возвращается в основные фонды производства. Только 1,6 Гт составляют личное потребление всех людей, причем 2/3 этой массы относится к нетто-потреблению продуктов питания.

Рис. 5.1. Схема глобального антропогенного материального баланса

(по Акимовой, Хаскину, 1998, с исправлениями)

Потоки потребления и потоки отходов в Гт/год.

 

Наиболее серьезные проблемы связаны с потреблением биоресурсов, технической энергетикой и промышленным производством. Ежегодное изъятие не менее 10 Гт сухого вещества биомассы в виде сельскохозяйственной продукции, древесины и морепродуктов составляет более 7% продукции фотосинтеза на суше. Но кроме этого, за счет антропогенного уменьшения биомассы и продуктивности естественных экосистем, замещения их агроценозами, вырубки лесов, опустынивания, техногенной деградации и т.п. человек косвенно переводит в антропогенный канал еще 27-30% первичной продукции экосистем суши, в целом снижая продуктивность земной биосферы примерно на 12%. Именно это расценивается как самое главное вмешательство человеческого хозяйства в природные процессы.

В добывающей и перерабатывающей промышленности мира за год образуется более 100 Гт твердых и жидких отходов; из них около 15 Гт попадает со стоками в водоемы, а остальное количество - 90 Гт/год добавляется к отвалам пустой породы, золо- и шлакоотвалам, к другим хранилищам и захоронениям промышленных отходов, к свалкам. Сжигание 12 Гт ископаемого топлива, сжигание и биологическое окисление более 7 Гт изымаемой растительной биомассы и другие производственные окислительные процессы отнесены в балансе к массообмену в атмосфере. Они сопряжены с потреблением 40 Гт кислорода и возвращением в атмосферу 52 Гт углекислого газа и других окислов. Вместе с ними в воздух попадают продукты неполного сгорания, различные пыледымовые аэрозоли, соли, а также значительная масса разнообразных летучих органических веществ, выделяющихся при производственных процессах и работе транспорта. Общая масса этих примесей достигает 1 Гт в год. Одновременно в среду выделяется более 530 ЭДж техногенной теплоты. Более подробно техногенные эмиссии и их воздействия на природные системы и окружающую среду рассмотрены в следующей главе.

Наиболее существенным отличием техногенного массообмена от биотического круговорота является то, что техносферный круговорот веществ существенно разомкнут и в количественном, и в качественном отношении. Поскольку техногенный массообмен составляет заметную часть глобального круговорота веществ, своей разомкнутостью он нарушает необходимую высокую степень замкнутости биотического круговорота, которая выработана в процессе длительной эволюции и является важнейшим условием стационарного состояния биосферы. Это означает очень серьезное нарушение биосферного равновесия.

О степени разомкнутости техногенного круговорота можно судить по его вмешательству в глобальный круговорот углерода (см. §. 3.5; рис. 3.5). Непосредственная техногенная эмиссия СО2 в атмосферу составляет 30 Гт/год. К этому количеству добавляется еще по меньшей мере 3,5 Гт СО2, выделяющегося в результате изъятия фитомассы и эрозии почвы. Кроме этого, судя по массе сильных кислот, образующихся из техногенных оксидов серы и азота и выпадающих на землю в виде кислотных дождей, вытесняемый ими СО2 из карбонатов и органики почвы дает еще минимум 1,5 Гт углерода. Таким образом, в результате непосредственного и косвенного вмешательства в природный круговорот углерода общее количество СО2, ежегодно выбрасываемого в атмосферу, достигло 35 Гт и на 10% увеличило планетарный обмен углерода.

Казалось бы, при очень высокой замкнутости биосферного круговорота углерода и огромной буферной емкости биосферы и океана по связыванию атмосферного избытка СО2 это увеличение не должно приводить к нарушению равновесия. Более того, можно было бы ожидать улучшения углеродного питания растений и повышения их продуктивности. Но в действительности содержание СО2 в атмосфере на протяжении последних десятилетий неуклонно увеличивается. Следовательно, буферные системы биосферы и океана не справляются с регулированием равновесия потоков СО2. Это можно объяснить снижением ассимиляционного потенциала земной флоры (в основном из-за быстрого сокращения площади лесов) и значительным загрязнением суши и поверхности океана.

Нарастание концентрации СО2 в атмосфере вместе с другими техногенными газами усиливает парниковый эффект, т.е. поглощение нижним слоем атмосферы инфракрасного излучения падающей на землю солнечной радиации. Это приводит к некоторому повышению средней температуры атмосферы, гидросферы и поверхности земли - так называемому глобальному потеплению.* За последние 30 лет для нижних слоев атмосферы и поверхности суши оно составило не менее 0,6°, что соответствует прибавке колоссального количества энергии. Повышение температуры способствует дополнительному выделению углекислого газа из воды, почвенной влаги, тающих льдов, отступающей вечной мерзлоты, поскольку растворимость СО2, в воде заметно снижается с повышением температуры. Кроме этого, техногенные кислотные осадки помимо прямого негативного действия на биоту вытесняют СО2 из карбонатов почвы, вод и грунтов. Возник порочный круг самоусиления парникового эффекта (рис. 5.2). Таким образом, современная техносфера не только вытесняет и замещает биосферу, но и нарушает средорегулирующую функцию биосферы, что еще опаснее. Эта опасность усугубляется тем, что техносфера не может существовать без биосферы, так как в огромной мере пользуется ее средой и ее ресурсами.

 

Рис. 5.2. Схема, поясняющая нарушение биотической регуляции круговорота углерода и самоускорение парникового эффекта

 




Поделиться с друзьями:


Дата добавления: 2014-11-07; Просмотров: 837; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.