КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Общие сведения. Сверхпроводимость Содержание лекции: 16. 1. Общие сведения 16. 2. Основные виды сверхпроводникового (СП) оборудования
СВЕРХПРОВОДИМОСТЬ
Сверхпроводимость — явление, заключающееся в том, что у определенных химических элементов, соединений, сплавов при их охлаждении ниже определенной температуры наблюдается переход из нормального в так называемое сверхпроводящее состояние, в котором их электрическое сопротивление постоянному току полностью отсутствует. При этом переходе структурные свойства этих сверхпроводников остаются практически неизменными. Электрические и магнитные свойства в сверхпроводящем состоянии резко отличаются от этих свойств в нормальном режиме. Явление сверхпроводимости было открыто Г. Камерлинг-Оннссом в 1911 г. при исследовании ртути. Он обнаружил, что при охлаждение ртутной проволоки ниже 4 К (—270 °С) ее сопротивление скачком обращается в нуль. Нормальное же состояние восстанавливается при пропускании через проволоку достаточно сильного тока или при помещении в достаточно сильное магнитное поле. В 1933 г. Ф.В. Мейснером было обнаружено другое важное свойство сверхпроводников — внешнее магнитное поле, меньшее некоторого критического значения, не проникает в глубь проводника, имеющего форму бесконечно сплошного цилиндра, ось которого направлена вдоль поля, и отлично от нуля лишь в тонком поверхностном слое. В разработку теории сверхпроводимости большой вклад внесли отечественные ученые Л.Д. Ландау, В.Л. Гинзбург, А.А. Абрикосов, Л.П. Горьков. Различают низкотемпературную и высокотемпературную сверхпроводимости. Низкотемпературная сверхпроводимость достигается при охлаждении определенных материалов жидким гелием при уровне температур 4 К (точнее 4,2 по Кельвину, эта температура кипения жидкого гелия при нормальном давлении). Высокотемпературная сверхпроводимость достигается при охлаждении определенных материалов жидким азотом при температуре 77 К (точнее 77,3 по Кельвину или -195,7 °С). Сильноточная прикладная низкотемпературная сверхпроводимость (НТСП) имеет более чем сорокалетнюю историю. Основные технические НТСП-материалы, разработанные в конце 70-х и начале 80-х годов и используемые в настоящее время, представлены двумя подгруппами: неупорядоченными деформируемыми сплавами ниобий-титан (Nb-Tc) с критической температурой Тк = 9,6 К и критическим магнитным полем с индукцией Вк = 12 Тл, они имеют плотность критического тока 3 • 105 А/м2 при рабочей температуре 4,2 К в магнитном поле с индукцией В = 5 Тл; интерметаллическими соединениями Nb3Sn с критической температурой Тк = 18,3 К, критическим магнитным полем с индукцией 24 Тл, характеризуются более высокой плотностью критического тока 10° А/м2 при рабочей температуре 4,2 К в магнитном поле с индукцией 10 Тл. На базе этих материалов были изготовлены опытные образцы различных электротехнических устройств: электрических турбогенераторов, накопителей электрической энергии, кабелей, трансформаторов и др., испытаниями которых были подтверждены их ожидаемые свойства. Вместе с тем, высокая стоимость криогенной системы, требующейся для получения температуры 4,2 К жидкого гелия, стоимость эксплуатационных расходов и недостаточная надежность не позволили этим устройствам получить практическое применение в сильноточной электротехнике. В других областях, например в медицине (в томографах), НТСП-техно-логии получили достаточно широкое и практическое коммерчески выгодное применение. Большие надежды на практическое применение сверхпроводимости в электроэнергетике связаны с открытием в 1986 г. высокотемпературной сверхпроводимости (ВТСП). Жидкий азот, применяемый для охлаждения ВТСП-материалов, существенно более дешевый хладагент, чем гелий, его производство освоено в промышленных масштабах. ВТСП-материалы подразделяются на материалы первого и второго поколений. Материалы первого поколения созданы на базе сверхпрпроводников семейства висмутовых купратов (Bi-2223) со структурой слоистого перов-скита с критическими параметрами Гк = 110 К, Вк > 100 Тл. Плотность критического тока при 77 К немного превышает 108 А/м2, рабочие токи единичных проводников (4—5 мм шириной, 0,2—0,3 мм толщиной) составляет 40—150 А. На базе этих проводников уже созданы опытные образцы разнообразных устройств: кабелей, ограничителей токов короткого замыкания (КЗ), трансформаторов, синхронных компенсаторов, электродвигателей. Есть, однако, два обстоятельства, заметно ограничивающих использование ВТСП-материалов первого поколения. Очевидно, что в ближайшем будущем предпочтительной рабочей температурой будет являться 77,3 К. Висмутовые провода (Bi-2223) в этих условиях могут работать в магнитных полях, перпендикулярных плоскости ленты и не превышающих 0,3 Тл. При этом плотность тока составляет лишь 2—4 • 10^ А/м2, что обеспечит практическое использование ВТСП-материалов первого поколения для электрических кабелей, и, возможно, ограничителей токов КЗ, где амплитуда индукции магнитного поля, как правило, не выше 0,2—0,3 Тл. Второе обстоятельство касается проблем цена/качество ВТСП-прово-дов первого поколения. Для широкомасштабного использования в электроэнергетике сверхпроводникового оборудования даже с учетом вышеизложенного ограничения по значению магнитной индукции, стоимость ВТСП-провода должна быть соизмерима со стоимостью меди. В настоящее же время стоимость ВТСП-проводов первого в 6—8 раз выше стоимости медных и по оценкам фирм-производителей не опустится выше 3—4 раз. Все надежды на широкомасштабное промышленное использование в электроэнергетике сверхпроводниковых технологий и оборудования связывают с так называемыми ВТСП-материалами второго поколения, производство которых осваивается в США, Японии, странах ЕС, Южной Корее, КНР и др. Основу ВТСП-материалов второго поколения составляют иттриевая керамика (пленка с покрытием). На гибкой подложке никелевого сплава формируется специальный буферный слой с кристаллической структурой. На этот слой осаживается сверхпроводник, который затем покрывается стабилизирующим металлом. Получается гибкая тонкая монокристаллическая сверхпроводящая пленка на несущей ленте, обладающая весьма высокой токонесущей способностью и большой плотностью тока. В настоящее время фирмы предлагают эти материалы по стоимости в 7—8 раз выше стоимости медных проводов. Однако по прогнозам фирм-производителей ВТСП-материалов второго поколения к 2010—2015 гг. их стоимость может оказаться соизмеримой со стоимостью медного провода. Если эти прогнозы оправдаются, то сверхпроводимость в электроэнергетике найдет широкое применение. Есть большая доля уверенности, что эти прогнозы оправдаются.
Дата добавления: 2014-10-15; Просмотров: 453; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |