Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Джерела швидких нейтронів та вплив різних факторів на покази нейтронних методів




Метод густини надтеплових нейтронів (ННК-НТ) базується на реєстрації інтенсивності надтеплових нейтронів по розрізу свердловини, які виникають при опроміненні гірської породи джерелом швидких нейтронів.

Густина надтеплових нейтронів визначається сповільнюючими властивостями (водневим вмістом) середовища і практично не залежить від поглинаючих властивостей (наявність елементів із високим січенням захоплення теплових нейтронів). У цьому є переваги даного методу над іншими нейтронними методами дослідження свердловин.

Густина надтеплових нейтронів визначається також і довжиною зонда. Зонди, які використовуються в ННК-НТ, поділяються на до інверсійні, інверсійні та за інверсійні. Розміри до інверсійних та інверсійних зондів на небагато менші зондів ННК-Т. Це пояснюється тим, що в ННК-НТ залежність густини надтеплових нейтронів від водневого вмісту при різних довжинах зондів визначається тільки довжиною сповільнення теплових нейтронів, у той час як в ННК-Т вона обумовлена, крім того, коефіцієнтом дифузії, довжиною дифузії та часом життя теплових нейтронів.

Зв’язок густини надтеплових нейтронів із водневим вмістом при різних довжинах зондів такий же, як і в НГК і ННК-Т.

Свердловинна вимірювальна установка ННК-НТ відрізняється від свердловинного приладу ННК-Т лічильником реєстрації частинок. Індикаторами надтеплових нейтронів служать пропорційні бор-фторові газорозрядні лічильники та сцинтиляційні лічильники теплових нейтронів (люмінофори типу ЛДН), оточені ззовні парафін-кадмієвим або парафін-борним фільтром. Принцип роботи таких лічильників полягає в наступному. Із навколишнього середовища на свердловинний прилад надходять нейтрони теплових і надтеплових енергій. Теплові нейтрони поглинаються кадмієм або бором, який є зовнішнім покриттям таких індикаторів. Надтеплові нейтрони, безперешкодно пройшовши зовнішній екран, сповільнюються парафіном до теплових енергій та реєструються індикатором, так само як і в ННК-Т.

Переважно при радіометричних дослідженнях розрізів свердловин використовуються за інверсійні зонди (25-40 см). Радіус дослідження ННК-НТ менший ніж в НГК і ННК-Т, тому свердловинні умови ще в більшій степені впливають на інтенсивність надтеплових нейтронів, яка реєструється.

Методи ННК-Т і ННК-НТ вільні від впливу природного γ-випромінювання та від γ-випромінювання джерела нейтронів.

Довжина зондів в цих методах вибирається 0,4-0,5 м. Для цього виду каротажу характерна мала глибина дослідження, яка залежить від властивостей порід і вмісту в них водню і дорівнює 0,2-0,3 м. Якнайменший радіус дослідження має метод ННК-НТ, оскільки область розповсюдження надтеплових нейтронів менше ніж теплових.

Нейтронні методи із стаціонарним джерелом дають можливість виділяти в розрізі свердловини: глини, щільні породи і ділянки підвищеної пористості. У експлуатаційних обсаджених свердловинах нейтронні методи застосовуються для визначення місцеположення газорідинного і водонафтового контактів.

У обсаджених свердловинах ефективність нейтронних методів знижується. Покази методу дуже сильно залежать також від мінералізації промивної рідини.

Джерелом швидких нейтронів є порошкоподібна суміш альфа-випромінювання (полонію, плутонію або радію) з (берилієм або бором), запакована в герметичну ампулу та захищена латунним кожухом.

Утворення нейтронів відбувається за наступним принципом. Ядро берилію, яке використовується в якості мішені, взаємодіючи з альфа-частинкою (42He), перетворюється в ядро вуглецю. При цьому утворюється нейтрон:

 

. (3.29)

 

За складом суміші мішені та випромінювання розрізняють наступні джерела


швидких нейтронів: плутоній-берилієві (Pu+Be), полоній-берилієві (Pо+Be), радій-берилієві (Ra+Be), радій-борні (Ra+B), полоній-борні (Pо+B).

Суттєвий недолік радієвих джерел – висока інтенсивність гамма-випромінювання, що супроводжується виходом кожного нейтрона. На практиці радіометричних досліджень свердловин переважно використовують полоній-берилієві джерела, вихід супроводжуючого гамма-випромінювання в яких на чотири порядки нижчий, ніж у радій-берилієвих. З цієї точки зору ще більш перспективно використовувати плутоній-берилієві джерела, в яких гамма-фон практично відсутній.

Ампульні нейтронні джерела мають і інші недоліки, які понижують ефективність радіометричних досліджень свердловин: загроза опромінення обслуговуючого персоналу, немонохроматичність енергетичного спектру і відносно мала енергія випромінюючих нейтронів, зміна виходу нейтронів у часі, складність створення в свердловині нестаціонарних нейтронних полів.

На практиці промислових геофізичних досліджень свердловин у якості джерел швидких нейтронів також використовують свердловинні генератори нейтронів.

На покази нейтронного гамма-каротажу в значній мірі впливають водневий вміст і вміст хлору, причому по-різному: при підвищенні водневого вмісту покази інтенсивності НГК зменшуються, а при підвищенні вмісту хлору – збільшуються.

Покази нейтронного гамма-каротажу в більшій степені залежать від конструкції глибинного приладу та свердловинних умов. Диференціююча здатність НГК гірських порід за водневим вмістом зростає із збільшенням товщини та густини між джерелом нейтронів та індикатором гамма-квантів, при оточенні індикаторів кадмієвим екраном, а також при збільшенні діаметру гільзи приладу.

Із збільшенням товщини фільтруючого свинцевого екрану понижується вплив фону від прямого гамма-випромінювання нейтронних джерел.

На абсолютну величину інтенсивності реєстрації НГК основний вплив відіграє зміна товщини шару речовини, яка містить водень, – заповнювача свердловини (промивна рідина, глиниста кірка, цемент), що оточує глибинний прилад. Із збільшенням товщини даного шару величина I ng у всіх випадках понижується, причому найбільш різко напроти середовищ із малим вмістом водню. При збільшенні діаметру гільзи приладу зменшується товщина шару промивної рідини в свердловині поблизу нього, що еквівалентно зменшенню діаметру свердловини. Суттєво впливає на величину I ng також зміна концентрації С р даного розчину за хлором: із збільшенням С р величина I ng зростає.

У випадку наявності цементного каменю інтенсивність НГК зменшується. Величина даного зниження залежить від співвідношення діаметрів колони та свердловини, товщини стінок колони та в більшій степені від ексцентриситету.

На покази нейтронного гамма-каротажу також впливає зона проникнення промивної рідини. У зв’язку з проникненням у пласт слабо мінералізованого фільтрату поглинаючі властивості гірських порід різко понижаються.

Оскільки радіус дослідження ННК-Т малий, то густина теплових нейтронів, що реєструється, залежить не тільки від нейтронних властивостей гірських порід, але і від конструктивних особливостей свердловини та приладу (співвідношення їх діаметрів), наявність або відсутність обсадних колон і цементу, наявність глинистої кірки, вміст хлору в промивній рідині, розміщення приладу в свердловині (ексцентриситет) і т.д.

Вплив всіх перерахованих факторів (за виключенням вмісту хлору в промивній рідині) на покази ННК-Т аналогічні перерахованим НГК, тільки їх ступень впливу ще більший. Якщо в НГК збільшення вмісту хлору в промивній рідині приводить до фонового підвищення гамма-випромінювання радіаційного захоплення, що реєструється, то в ННК-Т із підвищенням вмісту хлору густина теплових нейтронів понижується, причому приблизно в однаковій ступені по всьому розрізу свердловини.

Вплив зони проникнення на результати ННК-Т аналогічний впливу на покази НГК.

На результати нейтрон-нейтронного каротажу за надтепловими нейтронами мінералізація промивної рідини практично не впливає.

Зона проникнення промивної рідини впливає на покази ННК-НТ тільки при дослідженні газоносних товщ, так як у даному випадку відбувається вирівнювання водневого вмісту в присвердловинному просторі проти газоносних, нафтоносних і водоносних пластів, тому при роботі в газовій свердловині необхідно, щоб вона була обсадженою і в присвердловинній зоні відновився першопочатковий розподіл водню.




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 475; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.