КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теплообмен излучением системы тел в прозрачной среде
Описание процесса излучения. Основные определения ЛЕКЦИЯ 13 Тепловое излучение есть результат превращения внутренней энергии тел в энергию электромагнитных колебаний. Тепловое излучение как процесс распространения электромагнитных волн характеризуется длиной волны l и частотой колебаний n=с/l, где с – скорость света (в вакууме с=3×108 м/с). Тепловой поток, излучаемый на всех длинах волн с единицы поверхности тела по всем направлениям, называется поверхностной плотностью потока интегрального излучения Е, Вт/м2. Часть энергии излучения Епад, падающего на тело, поглощается (Еа), часть отражается (ЕR) и частично проникает сквозь него (ЕD). Таким образом, Еа+ЕR+ED=Eпад. Это уравнение теплового баланса можно записать в безразмерной форме: A+R+D=1. Величина А называется коэффициентом поглощения, R – коэффициентом отражения, D – коэффициентом пропускания. Тело, поглощающее все падающее на него излучение, называется абсолютно черным. Для этого тела А=1. Тела для которых А<1 и не зависит от длины волны падающего излучения, называются серыми. Для абсолютно белого тела R=1, для абсолютно прозрачного D=1. Сумма потоков собственного и отраженного телом излучения называется его эффективным излучением: Еэф=Е+REпад. Суммарный процесс взаимного испускания, поглощения, отражения и пропускания энергии излучения в системах тел называется лучистым теплообменом. Поверхностная плотность потока интегрального излучения абсолютно черного тела в зависимости от его температуры описывается законом Стефана-Больцмана: Е0=s0Т4. Здесь s0=5,67×10-8 Вт/(м2×К4) – постоянная Стефана-Больцмана. Для технических расчетов закон Стефана-Больцмана обычно записывают в виде: Е0=С0(Т/100)4. Где С0=s0×108=5,67 Вт/(м2×К4) называется коэффициентом излучения абсолютно черного тела. Тела, с которыми мы имеем дело на практике, излучают меньше тепловой энергии, чем абсолютно черное тело при той же температуре. Отношение поверхностной плотности потока собственного интегрального излучения Е данного тела к поверхностной плотности потока интегрального излучения Е0 абсолютно черного тела при той же температуре называется степенью черноты этого тела: e=Е/Е0. Степень черноты e меняется для различных тел от нуля до единицы в зависимости от материала, состояния поверхности и температуры. Используя понятие степени черноты, можно записать закон Стефана-Больцмана для реального тела: Е=e×Е0=e×С0(Т/100)4=С(Т/100)4. Здесь С=e×С0 – коэффициент излучения реального тела, Вт/(м2×К4).
Рассмотрим теплообмен между двумя единичными поверхностями, обращенными друг к другу с небольшим зазором, причем Т1>Т2. В этой системе Е1 – энергия собственного излучения первого тела на второе, Е2 – второго на первое. Ввиду малого расстояния между ними практически все излучение каждой из рассматриваемых поверхностей попадает на противоположную. Воспользуемся понятием эффективного излучения Еэф, представленного выражением Еэф=Е+REпад. Для непрозрачного тела (D=0 и R=1-A) выражение Еэф=Е+REпад запишется в виде Еэф=Е+Eпад(1-А). Каждое из рассматриваемых тел имеет эффективное (полное) излучение, соответственно Еэф1 и Еэф2. Для первого тела Еэф2 является падающим излучением, поэтому Еэф1=Еэф1+Еэф2(1-А1) Аналогично для первого тела Еэф2=Еэф2+Еэф1(1-А2) Плотность результирующего теплового потока от первого тела на второе равна q1,2=Еэф1-Еэф2 Подставляя найденные из совместного решения уравнений выражение Еэф1 и Еэф2 в формулу q1,2=Еэф1-Еэф2 получаем Заменим величины Е1 и Е2 по формуле Е=e×Е0=e×С0(Т/100)4=С(Т/100)4. Тогда Будем считать что степень черноты обеих поверхностей не меняется в диапазоне температур от Т1 до Т2. Следовательно по закону Кирхгофа А1=e1 и А2=e2. Заменяя А на e и вынося e1e2с0, получаем: величина =eпр называется приведенной степенью черноты системы тел. С учетом eпр и выражения формула для полного топливного потока записывается в виде где F – площадь теплообменной поверхности одинаковая в нашем случае для обоих тел. Из =eпр видно, что eпр меняется от нуля до единицы, оставаясь всегда меньше e1 и e2. В соответствии с формулой полный поток теплоты, передаваемый излучением от горячего тела более холодному, пропорционален поверхности тела, приведенной степени черноты и разности четвертых степеней абсолютных температур тел. На практике часто наблюдается одна теплообменная поверхность полностью охватываемая другой. В отличии от теплообмена между близко расположенными поверхностями с равными площадями здесь лишь часть излучения поверхности F2 попадает на F1. Остальная энергия воспринимается самой же поверхностью F2. Тепловой поток, передаваемый излучением от внутреннего тела к внешнему, можно также определить по формуле если вместо F подставить поверхность меньшего тела F1, а степень черноты системы определить по формуле: В случае теплообмена между произвольными телами каждое из них излучает на другое лишь часть энергии, излучаемой им по всем направлениям; остальная энергия рассеивается в пространстве или попадает на другие тела. В этом случае в расчетную формулу вводится поправочный коэффициент, называемый коэффициентом облученности тела j1,2 и учитывающий долю излучения первого тела, которая воспринимается вторым телом. Таким образом, теплообмен между двумя произвольно расположенными телами может быть рассчитан по формуле
Дата добавления: 2014-10-15; Просмотров: 717; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |