КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Прием 5. Перенос нагрузок в другие точки сети
Иногда замену нескольких ЛЭП одной эквивалентной или нескольких источников одним эквивалентным нельзя выполнить из-за промежуточных нагрузок. Поэтому сначала необходимо выполнить преобразование, которое называется переносом нагрузки. Идея данного преобразования заключается в замене схемы с промежуточной нагрузкой схемой, в которой нагрузка разделена на части и включена по концам участка ЛЭП. Рассмотрим сеть с двухсторонним питанием (рис. 13.4 а). Считаем, что напряжения во всех точках сети равны по величине и совпадают по фазе:
Предположим, что выполнению какого-то преобразования мешает нагрузка в точке 1. Прямая задача. Перенести нагрузку из точки 1 на шины источников питания и найти распределение мощности в преобразованной схеме (рис.13.4 б). Условие преобразования – режим сети за границами преобразованного участка остается таким же, как и до преобразования.
Найдем мощности головных участков в исходной схеме:
; .
Значения мощностей головных участков в преобразованной схеме:
Сопротивления Условие преобразования в математическом виде записывается следующим образом:
; .
Приравняем выражения для мощностей и :
Выполним преобразования:
.
Сократим одинаковые элементы равенства и найдем ту часть мощности нагрузки 1, которая была перенесена на источник питания А:
Если выполнить аналогичные преобразования, приравняв мощности и , то найдем ту часть мощности нагрузки 1, которая была перенесена на источник питания В:
Правильность расчетов подтверждается следующей проверкой:
Для удобства выполнения преобразования мы выполнили перенос нагрузки на источники питания. Фактически перенос нагрузки может быть произведен в любые два узла линейного участка сети. При этом мощности нагрузок в этих узлах изменятся на величину перенесенной мощности. Обратная задача. Вернуть нагрузку в точку 1 и найти распределение мощности в исходной схеме (рис.13.4 а). В исходной схеме мощность на участке А-1 равна мощности источника питания А: . (13.5)
В преобразованной схеме мощность на участке А-2 равна:
(13.6)
Вычтем из выражения (13.5) выражение (13.6). Получим:
Так как , то
Искомая мощность определяется как:
.
Будем двигаться от источника питания В. В исходной схеме мощность на участке 1-2 равна: . (13.7)
В преобразованной схеме мощность на участке А-2 равна:
. (13.8) Вычтем из выражения (13.7) выражение (13.8). Получим:
.
Сократим на сумму и учитывая , получим выражение
,
из которого найдем искомую мощность S 12:
.
Из полученных преобразований можно записать следующее правило возврата нагрузки. Если направление возврата нагрузки совпадает с направлением мощности на участке в преобразованной схеме, то для определения мощности в исходной схеме необходимо сложить перенесенную нагрузку и мощность на участке в преобразованной схеме. Если направление возврата не совпадает, то для определения мощности в исходной схеме, нужно из мощности на участке в преобразованной схеме вычесть мощность перенесенной нагрузки.
Лекция № 14
Баланс мощностей в энергосистеме
Передача электроэнергии по ЛЭП электромагнитными волнами осуществ-ляется со скоростью, близкой к скорости света, т.е. практически мгнолвенно. Это приводит к тому, что производство, распределение и потребление электроэнергии происходит одновременно. Поэтому в любой момент времени установившегося режима системы должны вырабатывать мощность, равную мощности потребите-лей и потерям мощности в элементах системы. Другими словами, в энергосистеме должен иметь баланс выдаваемой и потребляемой мощности:
(14.1) ,
где активная мощность, которая вырабатывается генераторами электростанций за вычетом мощности, расходуемой на собственные нужды элект-ростанций; суммарная потребляемая активная мощность, которая складывается из мощности нагрузок и потерь мощности ; реактивная мощность, которая вырабатывается генераторами электростан-ций за вычетом мощности, расходуемой на собственные нужды электростанций, а также реактивная мощность дополнительных источников реактивной мощности; суммарная потребляемая реактивная мощность, которая складывается из мощности нагрузок и потерь мощности . Потери активной мощности включают в себя потери мощности в воздушных и кабельных ЛЭП, электромагнитных аппаратов и устройств управления режимами системы. Суммарные потери реактивной мощности – это алгебраическая сумма потерь мощности в сопротивлениях и проводимостях воздушных и кабельных ЛЭП, трансформаторах, мощности намагничивания и рассеяния электромагнитных аппаратов. При неизменном составе нагрузок активная и реактивная мощность, потребляемая системой, является функцией частоты и напряжения на шинах потребителей. Баланс мощности в системе отвечает некоторым определенным значениям частоты и напряжения. При изменении их значений изменяются в той или иной степени правая и левая части уравнения баланса (100.1) и наоборот. Количественную оценку изменения величин, входящих в уравнение баланса, можно выполнить по статическим характеристикам нагрузки (потребителей) P п и Q п. Статические характеристики представляют собой зависимости потребляемой активной и реактивной мощностей от частоты и напряжения (P п = F (U), P п = F (f), Q п = F (U) и Q п = F (f)) при таких малых их изменениях, что каждый новый режим может считаться установившимся. Они приведены на рис. 14.1.
Проанализируем величины производных и при незначительных изменениях напряжения и частоты в окрестностях точки (U ном, f ном):
и . (14.2)
Исходя из вида статических характеристик, можно записать:
и (14.3)
Предположим, что в первоначальном режиме уравнение баланса выполняется при значениях напряжения и частоты равных U 0 и f 0:
(14.4) При незначительном изменении мощности источников на величину изменятся и уравнения баланса. При разложении в ряд Тейлора функций P п (U, f) и Q п (U, f) в окрестностях точки (U 0, f 0 ) при учете только производных первого порядка, получим:
(14.5) .
Запишем в матричной форме систему (14.5):
. (14.6)
Решаем уравнение (14.6) относительно приращений
(14.7)
(14.8)
где определитель матрицы равен
Проанализируем полученное решение с помощью статических характеристик нагрузки. Допустим, что происходит увеличение генерируемой активной мощности при неизменной реактивной мощности, т.е. и . В этом случае уравнеия (14.7) и (14.8) имеют вид:
(14.9)
. (14.10) Проанализируем полученное решение. Учитывая знаки производных (см. формулы (14.2)), значение определителя будет отрицательным – . Так как
, ,
то приращения напряжения и частоты будут положительными (, ). Согласно (14.3),
.
Поэтому частота увеличивается в большей степени, чем напряжение. Анализируем дальше. Происходит увеличение генерируемой реактивной мощности при неизменной активной мощности, т.е. и . В этом случае уравнеия (14.7) и (14.8) имеют вид:
(14.11)
. (14.12)
Так как , , то приращение , а . А поскольку , напряжение будет увеличивается в большей степени, чем частота. Из анализа баланса мощностей в энергосистеме следует, что для регулирования напряжения нужно воздействовать, в первую очередь, на реактивную мощность, а для регулирования частоты нужно изменять активную мощность. Поэтому в задачу регулирования режима входят подразделы: · регулирование активной мощности и частоты в энергосистеме; · регулирование реактивной мощности и напряжения в энергосистеме. Такое разделение объясняется и физикой процесса производства электроэнергии. Частота тока определяется частотой вращения синхронных машин, которая зависит от соотношения вращающего и тормозного моментов на валу агрегата турбина-генератор. Для изменения их соотношения нужно изменить (увеличить или уменьшить) впуск энергоносителя в турбину. При этом изменяется выработка активной мощности, частота вращения синхронных машин и, как следствие, частота тока в энергосистеме. Кроме того следует учитывать, что · к изменению частоты в энергосистеме предъявляются более жесткие требования, чем к изменению напряжения; · для каждой электростанции задается оптимальный график работы; · кроме генераторов существуют дополнительные источники реактивной мощности, которые можно устанавливать в местах более близких к потребителям.
Лекция № 16
Дата добавления: 2014-10-15; Просмотров: 479; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |