КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Электротехнологические установки и системы
Перечислите наиболее широко применяемые линейные и пространственные полимеры, и укажите их особенности. 2. На какие классы нагревостойкости подразделяются электроизоляционные материалы, применяемые в электромашиностроении? 3. Какую роль играют волокнистые материалы в электрической изоляции? 4. Какие преимущества обеспечивает применение электроизоляционной керамики и стекол? 5. Перечислите области применения пленочных и слюдяных электроизоляционных материалов? 6. Для каких целей в электротехнике используется резина? 7. На какие основные классы делятся кабельные резины? Установки, в которых происходит превращение электрической энергии в другие виды с одновременным осуществлением технологических процессов, в результате которых происходит изменение вещества, называют электротехнологическими. Следует отметить, что в электротехнологических процессах используются свойства самих обрабатываемых веществ и материалов: электропроводность, магнитная проницаемость, диэлектрическая проницаемость, теплопроводность, теплоемкость, скрытая теплота плавления или парообразование, теплосодержание, энтальпия. Применение электротехнологий позволяет с веществом, находящимся в каждом из агрегатных состояний (показано на нижеприведенной блок-схеме, рисунок 3.1), посредством постоянных и переменных (различной частоты) токов, постоянных и переменных электрических и магнитных полей (с широким диапазоном напряженностей) совершать бесчисленное множество операций, а именно: изменение температуры, формы, структуры, состава, изменение свойств в разных направлениях и т. д.
Рисунок 3.1 Блок-схема. Агрегатные состояния вещества
Электротехнологические установки условно можно подразделить на установки общепромышленного и специального назначения. Основные группы электротехнологических установок общепромышленного назначения представлены на блок-схеме (рисунок 3.2)
Рисунок 3.2 Блок-схема. Основные группы электротехнологических установок общепромышленного назначения
Электротермические установки применяются в промышленности для термообработки металлов под пластическую деформацию, закалку, плавления, нагрева диэлектриков; в сельском хозяйстве для обогрева помещений различного технологического назначения; в быту (бытовые нагревательные приборы). Один из вариантов электротермических установок - индукционная тигельная печь. На рисунке 3.3 представлена схема печи. Индукционная тигельная печь широко применяется для плавки как цветных, так и черных металлов. Емкость печи может варьироваться от десятков граммов до десятков тонн. Электрохимические установки применяются в промышленности при электролизе расплавов и растворов, для нанесения защитных и декоративных покрытий, элекро-химико-механической обработки изделий в электролитах. В качестве примера на рисунке 3.4 представлена схема электролизной установки. Явление выделения вещества на электродах при прохождении через электролит тока, а также процессы окисления и восстановления на электродах, сопровождающиеся приобретением или потерей частицами вещества электронов, называется электролизом. В промышленности электролиз применяется в основном для анодного растворения металла и его катодного осаждения из растворов и расплавов.
Электромеханические установки применяются в промышленности для ультразвукового воздействия на обрабатываемый материал, магнито-импульсной обработки металлов. Одним из примеров электромеханической установки является установка ультразвуковой очистки. Принципиальная схема представлена на рисунке 3.5. Одним из типичных применений ультразвука в машиностроении является очистка поверхности изделий, загрязненных жировыми или мазутными пленками, покрытых осадками из продуктов сгорания топлива, ржавчиной, окалиной, оксидными пленками. Такого рода очистка выполняется обычно с помощью моющих средств, растворителей в барабанах, а также с помощью щеток. При использовании ультразвуковых колебаний очистка в ряде случаев может дать хорошие результаты при использовании воды; когда же очистка осуществляется с помощью растворителей, она ускоряется в десятки раз, причем качество ее (степень очистки поверхности) намного улучшается. Особенно эффективной оказывается ультразвуковая очистка деталей сложной конфигурации с полостями и, в частности, труб, так как механическая очистка таких деталей (например, щетками) затруднительна. На рисунке 3.5 подвергаемую очистке деталь помещают в ванну, в которой возникают ультразвуковые колебания.
Генератор колебаний может находиться под дном ванны, как показано на рисунке (в этом случае колебания передаются жидкости через дно), или в жидкости. Очистка может осуществляться как на частотах 400 - 800 кГц при применении пьезоэлектрического преобразователя, так и на более низких частотах (20 - 30кГн) при использовании магнитострикционных преобразователей.
Электрокинетические установки применяются для разделения сыпучих материалов и эмульсий, очистки сточных вод, электроокраски, электроэрозионной обработки металлов. Как пример на рисунке 3.6 показана установка для электроэрозионной обработки металлов. Для обработки металлов с высокими механическими свойствами применяется метод размерной обработки при непосредственном использовании теплового эффекта электрической энергии - электроэрозионная обработка. Она основана на эффекте расплавления и испарения микропорций материала под тепловым воздействием импульсов электрической энергии, которая выделяется в канале электроискрового заряда между поверхностью обрабатываемой детали и электродом-инструментом, погруженным в жидкую непроводящую среду. Следующие друг за другом импульсные разряды определенной длительности и формы производят выплавление и испарение микропорций металла. Электроэрозионный способ позволяет обрабатывать токопроводящие материалы любой механической прочности, вязкости, хрупкости, получать детали сложных форм и осуществлять операции, не выполняемые другими методами. При его использовании значительно снижается трудоемкость по сравнению с обработкой резанием, возможно осуществление механизации и автоматизации с целью глубокого регулирования параметров процесса. Приведенное разделение в большой степени условное, поскольку многие технологические процессы могут обеспечиваться (или сопровождаться) несколькими способами преобразования энергии, расширяя возможности электротехнологических процессов, например элекроэрозионная, магнитоимпульсная обработки металлов, электровзрывная обработка материалов и т.д.
Электротермические установки. Одной из наиболее распространенных групп электротехнологических установок общепромышленного назначения является группа электротермических установок. Электронагрев (электротермия) объединяет разнообразные технологические процессы тепловой обработки с использованием электроэнергии в качестве основного энергоносителя. Применение электрической энергии для нагрева имеет ряд достоинств - существенное снижение загрязнения окружающей среды; - получение строго заданных значений температур, в том числе и превосходящих уровни, достигаемые при сжигании любых видов топлива; - создание сосредоточенных интенсивных тепловых потоков; - достижение заданных полей температур в нагреваемом пространстве; - строгий контроль и точное регулирование длительности выделения энергии; - гибкость в управлении потоками энергии; - возможность нагрева материалов изделий в газовых средах любого химического состава и вакууме; - выделение тепловой энергии непосредственно в нагреваемом веществе. Использование электронагрева вместо пламенного в некоторых технологических процессах позволяет получить большую экономию топлива и сократить количество обслуживающего персонала. Внедрение электротермии также обеспечивает экономию материальных и трудовых ресурсов, что в конечном результате приводит к повышению экономической эффективности.
Дата добавления: 2014-10-15; Просмотров: 4237; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |