КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Учет граничных условий
Реализация вариационного принципа. Выбор аппроксимирующих функций. Выбор вариационного принципа. Выбор вариационного принципа определяет основные неизвестные функции, через которые впоследствии устанавливаются остальные неизвестные. В задачах механики деформируемого твердого тела используются следующие вариационные принципы: принцип Лагранжа, в соответствии с которым варьируются перемещения; принцип Кастильяно (варьируются напряжения), принцип Рейсснера (варьируются перемещения и напряжения), принцип Ху-Вашицы (варьируются перемещения, напряжения и деформации). В практических расчетах чаще всего используется принцип Лагранжа. Поэтому дальнейшее изложение базируется на его основе. При кусочно-непрерывной аппроксимации предполагается, что перемещения внутри элемента могут быть выражены через перемещения в его узлах. Эта связь описывается при помощи так называемых функций формы, которые аппроксимируют действительное поле перемещений внутри элемента. От выбора аппроксимирующих функций в значительной степени зависит точность решения. Эти функции должны удовлетворять следующим критериям: - критерию полноты: при стремлении размеров элемента к нулю выбранные функции формы должны обеспечить любые простые значения. - критерию совместимости: функции формы должны обеспечивать непрерывность перемещений и ее производных до (n-1)-го порядка на границе между элементами (где n-порядок старшей производной в функционале энергии). Если выбранный тип элемента обеспечивает непрерывность поля перемещений, то по классификации его относят к классу С0 – элементов, а если обеспечивается и непрерывность деформации, то к классу С1 – элементов. При выполнении этих критериев с увеличением числа конечных элементов, моделирующих конструкцию, результаты расчета монотонно сходятся к точному решению. Нарушение критерия совместимости в ряде случаев приводит к достоверному результату, но сходимость в этих случаях не будет монотонной. На этом этапе осуществляется вычисление матриц жесткостей элементов и построение глобальной матрицы системы алгебраических уравнений и вектора узловых сил. Глобальная матрица жесткости может быть получена несколькими методами: - методом непосредственного сложения жесткостей; - методом конгруэнтного преобразования; - при помощи конечно-разностных операторов. Полученная на основе указанных методов матрица жесткости является вырожденной, поскольку в соответствии с уравнениями равновесия заданной системы часть уравнений (для пространственных систем – шесть, а для плоских - три) окажутся взаимно зависимыми. Корректировка этой матрицы при учете граничных условий приводит к невырожденной системе линейных алгебраических уравнений.
Дата добавления: 2014-10-15; Просмотров: 704; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |