Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Графіки алгебраїчних функцій




 

Лінійна функція. Функція вигляду називається лінійною функцією. Графіком функції є пряма лінія, яку можна побудувати за двома точками. Наприклад, якщо то , отже, – точка перетину з віссю ; якщо , то , маємо точку – точку перетину з віссю

Множник називається кутовим коефіцієнтом. Його геометричний зміст – , де – кут нахилу прямої до додатного напрямку осі (рис. 4.10).

 

Рис. 4.10 Рис. 4.11

 

Приклад 4.6. Побудувати прямі і Знайти точку перетину прямих і кут нахилу прямої до осі

Розв’язання. 1) На : якщо то отже, – точка перетину з віссю ; якщо то отже, – точка перетину з віссю Таким чином, якщо відмітити точки і і провести через них пряму, то одержимо графік заданої функції . Аналогічно на маємо і – точки перетину відповідно з осями і Отже, з’єднуючи точки і , одержимо пряму (рис. 4.10). 2) Щоб знайти точку перетину двох графіків, треба прирівняти обидві функції: Розв’язком рівняння є Підставимо у будь-яке з рівнянь заданих прямих і одержимо ординату точки перетину Отже, – шукана точка. 3) Оскільки то

Пряма і обернена пропорційність. Найпростіший вигляд має рівняння прямої, яка проходить через початок координат: . Таке співвідношення між змінними і називається прямою пропорційністю, а число - коефіцієнтом пропорційності

(рис. 4.11, =2).

Співвідношення називається оберне ною пропорційністю. Графіком функції є гіпербола. Зазвичай гіперболу будують за точками. Оскільки функція є непарною, то спочатку будують одну гілку (для ), а другу будують симетрично початку координат. Прямі є асимптотами графіка (див. рис. 4.11, =2).

Приклад 4.7. Побудувати графік функції .

Розв’язання. Обчислимо кілька значень функції Таблиця 4.2

та запишемо їх для зручності у табл. 4.2. З

урахуванням симетрії та наявності асимптот будуємо

за точками задану криву (див.рис. 4.11).

Квадратична функція. Функція вигляду називається квадратичною функцією. Її графіком є парабола. Залежно від коефіцієнта та дискримінанта графік цієї функції може мати вигляд, наведений у табл. 4.3.

Таблиця 4.3

Абсциси вершин ,

Степенева функція. Функція вигляду , де (довільна стала) – показник степеня, називається степеневою функцією від незалежної змінної . На рис. 4.12 наведено графіки степеневих функцій при деяких додатних значеннях , на рис. 4.11 – для від’ємних.

Аналізуючи графіки, які наведено на рис. 4.11 і 4.12, можна зазначити таке:

1) функції , , є частковими випадками степеневої функції;

2) коли , всі графіки проходять через точки (0;0) і (1;1);

3) якщо , то більшому значенню відповідає більше значення ;

Рис. 4.12

4) коли , то і лінії і є асимптотами графіка функції;

5) якщо – парне, то графік розташовано у І та ІІ чвертях, а якщо непарне – у І та ІІІ чвертях.

4.3. Графіки тригонометричних функцій

 

Основними тригонометричними функціями є функції , , , . Графіки цих функцій наведено на рис. 4.13 – 4.16.

 

Рис. 4.13

 

 

Рис. 4.14

 

 

Рис. 4.15 Рис. 4.16

 




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 676; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.