Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Построение иерархии диаграмм потоков данных




При построении иерархии потоков данных целесообразно пользоваться следующими рекомендациями:

- Размещать на каждой диаграмме от 3 до 6-7 процессов. Верхняя граница соответствует человеческим возможностям одновременного восприятия и понимания структуры сложной системы с множеством внутренних связей, нижняя граница выбрана по соображениям здравого смысла: нет необходимости детализировать процесс диаграммой, содержащей всего один или два процесса.

- Не загромождать диаграммы не существенными на данном уровне деталями.

- Декомпозицию потоков данных осуществлять параллельно с декомпозицией процессов. Эти две работы должны выполняться одновременно, а не после завершения другой.

- Выбирать ясные, отражающие суть дела имена процессов и потоков, при этом стараться не использовать аббревиатуры.

Первым шагом при построении иерархии DFD является построение контекстных диаграмм. Обычно при проектировании относительно простых ИС строится единственная контекстная диаграмма со звездообразной топологией, в центре которой находится так называемый главный процесс, соединенный с приемниками и источниками информации, посредством которых с системой взаимодействуют пользователи и другие внешние системы. Количество потоков на контекстной диаграмме должно быть по возможности небольшим, поскольку каждый из них может быть в дальнейшем разбит на несколько потоков на следующих уровнях диаграммы.

Внешние сущности выделяются по отношению к основному процессу. Для их определения необходимо выделить поставщиков и потребителей основного процесса, т.е. все объекты, которые взаимодействуют с основным процессом. На этом этапе описание взаимодействия заключается в выборе глагола, дающего представление о том, как внешняя сущность использует основной процесс или используется им. Например, основной процесс – "учет обращений граждан", внешняя сущность – "граждане", описание взаимодействия – "подает заявления и получает ответы". Этот этап является принципиально важным, поскольку именно он определяет границы моделируемой системы.

Для всех внешних сущностей строится таблица событий, описывающая их взаимодействие с основным потоком. Таблица событий включает в себя наименование внешней сущности, событие, его тип (типичный для системы или исключительный, реализующийся при определенных условиях) и реакцию системы.

Если же для сложной системы ограничиться единственной контекстной диаграммой, то она будет содержать слишком большое количество источников и приемников информации, которые трудно расположить на листе бумаги нормального формата, и кроме того, единственный главный процесс не раскрывает структуры распределенной системы. Признаками сложности (в смысле контекста) могут быть:

·наличие большого количества внешних сущностей (десять и более);

·распределенная природа системы;

·многофункциональность системы с уже сложившейся или выявленной группировкой функций в отдельные подсистемы.

Для сложных ИС строится иерархия контекстных диаграмм. При этом контекстная диаграмма верхнего уровня содержит не единственный главный процесс, а набор подсистем, соединенных потоками данных. Контекстные диаграммы следующего уровня детализируют контекст и структуру подсистем.

Иерархия контекстных диаграмм определяет взаимодействие основных функциональных подсистем проектируемой ИС как между собой, так и с внешними входными и выходными потоками данных и внешними объектами (источниками и приемниками информации), с которыми взаимодействует ИС.

Разработка контекстных диаграмм решает проблему строгого определения функциональной структуры ИС на самой ранней стадии ее проектирования, что особенно важно для сложных многофункциональных систем, в разработке которых участвуют разные организации и коллективы разработчиков.

После построения контекстных диаграмм полученную модель следует проверить на полноту исходных данных об объектах системы и изолированность объектов (отсутствие информационных связей с другими объектами).

Для каждой подсистемы, присутствующей на контекстных диаграммах, выполняется ее детализация при помощи DFD. Каждый процесс DFD, в свою очередь, может быть детализирован при помощи DFD или миниспецификации. При детализации должны выполняться следующие правила:

·правило балансировки - означает, что при детализации подсистемы или процесса детализирующая диаграмма в качестве внешних источников/приемников данных может иметь только те компоненты (подсистемы, процессы, внешние сущности, накопители данных), с которыми имеет информационную связь детализируемая подсистема или процесс на родительской диаграмме;

·правило нумерации - означает, что при детализации процессов должна поддерживаться их иерархическая нумерация. Например, процессы, детализирующие процесс с номером 12, получают номера 12.1, 12.2, 12.3 и т.д.

Миниспецификация (описание логики процесса) должна формулировать его основные функции таким образом, чтобы в дальнейшем специалист, выполняющий реализацию проекта, смог выполнить их или разработать соответствующую программу.

Миниспецификация является конечной вершиной иерархии DFD. Решение о завершении детализации процесса и использовании миниспецификации принимается аналитиком исходя из следующих критериев:

·наличия у процесса относительно небольшого количества входных и выходных потоков данных (2-3 потока);

·возможности описания преобразования данных процессом в виде последовательного алгоритма;

·выполнения процессом единственной логической функции преобразования входной информации в выходную;

·возможности описания логики процесса при помощи миниспецификации небольшого объема (не более 20-30 строк).

Спецификации должны удовлетворять следующим требованиям:

·Для каждого процесса нижнего уровня должна существовать одна и только одна спецификация.

·Спецификация должна определять способ преобразования входных потоков в выходные.

·Нет необходимости (по крайней мере на стадии формирования требований) определять метод реализации этого преобразования.

·Спецификация должна стремиться к ограничению избыточности - не следует переопределять то, что уже было определено на диаграмме.

·Набор конструкций для построения спецификаций должен быть простым и понятным.

Фактически спецификации представляют собой описания алгоритмов задач, выполняемых процессами. Спецификации содержат:

·Номер и/или имя процесса.

·Списки входных и выходных данных.

·Тело (описание процесса), являющееся спецификацией алгоритма или операции, трансформирующей входные потоки данных в выходные.

При построении иерархии диаграмм потоков данных переходить к детализации процессов следует только после определения содержания всех потоков и накопителей данных, которое описывается при помощи структур данных. Для каждого потока данных формируется список всех его элементов данных, затем элементы данных объединяются в структуры данных, соответствующие более крупным объектам данных (например, строкам документов или объектам предметной области). Каждый объект должен состоять из элементов, являющихся его атрибутами. Структуры данных могут содержать альтернативы, условные вхождения и итерации.

Условное вхождение означает, что данный компонент может отсутствовать в структуре (например, структура «данные о страховании» для объекта «служащий»).

Альтернатива означает, что в структуру может входить один из перечисленных элементов.

Итерация означает вхождение любого числа элементов в указанном диапазоне (например, элемент «имя ребенка» для объекта «служащий»).

Для каждого элемента данных может указываться его тип (непрерывные или дискретные данные). Для непрерывных данных может указываться единица измерения (кг, см и т.п.), диапазон значений, точность представления и форма физического кодирования. Для дискретных данных может указываться таблица допустимых значений.

После декомпозиции основного процесса для каждого подпроцесса строится аналогичная таблица внутренних событий.

Следующим шагом после определения полной таблицы событий выделяются потоки данных, которыми обмениваются процессы и внешние сущности. Простейший способ их выделения заключается в анализе таблиц событий. События преобразуются в потоки данных от инициатора события к запрашиваемому процессу, а реакции – в обратный поток событий. После построения входных и выходных потоков аналогичным образом строятся внутренние потоки. Для их выделения для каждого из внутренних процессов выделяются поставщики и потребители информации. Если поставщик или потребитель информации представляет процесс сохранения или запроса информации, то вводится хранилище данных, для которого данный процесс является интерфейсом.

После построения законченной модели системы ее необходимо верифицировать (проверить на полноту и согласованность). В полной модели все ее объекты (подсистемы, процессы, потоки данных) должны быть подробно описаны и детализированы. Выявленные недетализированные объекты следует детализировать, вернувшись на предыдущие шаги разработки. В согласованной модели для всех потоков данных и накопителей данных должно выполняться правило сохранения информации: все поступающие куда-либо данные должны быть считаны, а все считываемые данные должны быть записаны. Непротиворечивость системы обеспечивается выполнением наборов формальных правил о возможных типах процессов: на диаграмме не может быть потока, связывающего две внешние сущности – это взаимодействие удаляется из рассмотрения; ни одна сущность не может непосредственно получать или отдавать информацию в хранилище данных – хранилище данных является пассивным элементом, управляемым с помощью интерфейсного процесса; два хранилища данных не могут непосредственно обмениваться информацией – эти хранилища должны быть объединены.

Кроме основных элементов, в состав DFD входят словари данных, которые являются каталогами всех элементов данных, присутствующих в DFD, включая групповые и индивидуальные потоки данных, хранилища и процессы, а также все их атрибуты.

К преимуществам методики DFD относятся:

·возможность однозначно определить внешние сущности, анализируя потоки информации внутри и вне системы;

·возможность проектирования сверху вниз, что облегчает построение модели "как должно быть";

·наличие спецификаций процессов нижнего уровня, что позволяет преодолеть логическую незавершенность функциональной модели и построить полную функциональную спецификацию разрабатываемой системы.

К недостаткам модели отнесем: необходимость искусственного ввода управляющих процессов, поскольку управляющие воздействия (потоки) и управляющие процессы с точки зрения DFD ничем не отличаются от обычных; отсутствие понятия времени, т.е. отсутствие анализа временных промежутков при преобразовании данных (все ограничения по времени должны быть введены в спецификациях процессов).

На рис. 8 приведен пример DFD-схемы бизнес-процесса "Оформлении и выдача трудовой книжки сотруднику при увольнении", разработанной в нотации Гейна-Сарсона, а на рис. 9 - в нотации Йордона-Де Марко.

Рис. 8. DFD-схема бизнес-процесса "Оформлении и выдача трудовой книжки сотруднику при увольнении" в нотации Гейна-Сарсона.

Рис. 9. DFD-схема бизнес-процесса "Оформлении и выдача трудовой книжки сотруднику при увольнении" в нотации Йордона-Де Марко.




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 1148; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.03 сек.