Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение физико-химических характеристик нефтей и нефтепродуктов




Плотность (). Плотность измеряется массой тела в единице объема и выражается в г/см3 (в системе СИ – в кг/м3). При измерении плотности нефтей и нефтепродуктов обычно определяют относительную плотность, равную отношению массы образца при температуре 20°С к массе того же объема воды при температуре 4°С. Так как масса 1 см3 воды при 4°С равна 1 г, то плотность, выраженная в г/см3, численно равна относительной плотности .

Определение плотности проводят, в основном, ареометрическим или пикнометрическим методами. Наиболее точным является пикнометрический метод.

Выполнение определения плотности ареометрическим методом. Для определения используют ареометры. Ареометр представляет собой стеклянный цилиндрический сосуд (рис. 1). Верхняя его часть заканчивается трубкой, а нижняя снабжена шариком, в котором помещен балласт, заставляющий ареометр плавать вертикально. Балластом служит дробь или ртуть. На трубке ареометра нанесены деления с обозначением плотности жидкости. Обычно шкала делается не на самой трубке, а на бумаге, вкладываемой внутрь шейки ареометра.

Для повышения точности измерения и удобства использования изготовляют набор ареометров, шкалы которых охватывают определенный диапазон плотностей. Обычно для определения плотности нефтепродуктов употребляют ареометры со следующими интервалами градуировки шкалы: 0,648—0,712; 0,708—0,772; 0,768—0,832; 0,828— Рис 68 0.892; 0,888—0,952. Градуировку ареометров производят при температуре 20°С и относят к плотности воды при 4°С, поэтому показания шкалы дают .

Кроме указанных ареометров, существуют ареометры для жидкостей тяжелее воды с градуировкой шкалы от 1,0 до 1,85 и для жидкостей легче воды с делениями от 1,00 до 0,700.

Ареометры иногда называют денсиметрами, а для нефтепродуктов — нефтеденсиметрами. Ареометры, которые применяют для измерения плотности только одной какой-нибудь жидкости, имеют специальные названия. Так, например, ареометры, применяемые для определения плотности уксусной кислоты, называют ацетометрами, для определения плотности растворов сахара — сахариметрами, спирта — спиртометрами.

Ареометрами можно определять плотность нефтепродуктов с кинематической вязкостью не выше 200 сантистокс (сст) при 50°С. Нефтепродукты с вязкостью больше чем 200 сст перед определением плотности разбавляют равным объемом тракторного или осветительного керосина.

Для проведения определения в чистый цилиндр с внутренним диаметром не менее 5 см наливают испытуемый нефтепродукт. Чтобы не образовывалась пена на поверхности цилиндра, продукт наливают не прямо на дно цилиндра, а по стеклянной палочке или по стенкам цилиндра. Если пена все же образовалась, то в случае маловязкого продукта достаточно хлопнуть ладонью по верху цилиндра, а в случае высоковязкого продукта ее надо снять фильтровальной бумагой. Температура исследуемого продукта не должна отклоняться от температуры окружающей среды более чем на ± 3°.

Стараясь не задеть стенки цилиндра, в жидкость осторожно вносят чистый и сухой ареометр, держа его за верхний конец («ножку»). Некоторое время ожидают, чтобы ареометр пришел в состояние равновесия, при этом необходимо, чтобы он не касался ни дна, ни стенок цилиндра. Для маловязких продуктов (бензин, керосин и т. п.) это время составляет 2—3 мин, для более вязких — до 15 мин. Отсчитывают деление на ареометре по верхнему краю мениска и отмечают температуру анализируемого продукта термометром, опущенным в жидкость. Если температура испытуемого продукта ниже или выше 20°, а ареометр градуирован на , то вводят поправку на найденную плотность. Расхождение между двумя параллельными определениями не должно превышать 0,001.

При определении плотности вязких нефтепродуктов методом разбавления в мерный цилиндр с притертой пробкой наливают определенный объем керосина известной плотности, а затем — равный объем испытуемого продукта. Полученную смесь перемешивают до тех пор, пока она не станет однородной. После этого ее переливают в чистый цилиндр для определения плотности. Зная плотность смеси керосина с продуктом ρ1 и плотность чистого керосина ρ2, рассчитывают плотность ρ продукта по формуле

ρ = 2ρ1 – ρ2 (13)

Расхождение между двумя параллельными определениями не должно превышать 0,004.

Определение относительной плотности при помощи пикнометра

Пикнометр представляет собой стеклянный сосуд с кольцевой меткой на шейке (рис. 2) объемом от 1 до 100 мл. Определение плотности при помощи пикнометра производят следующим образом. Пикнометр промывают последовательно хромовой смесью, дистиллированной водой, спиртом и высушивают в сушильном шкафу при температуре 100°С, охлаждают в эксикаторе и взвешивают с точностью до 0,0002 г. Высушивание продолжают до постоянной массы. Затем пикнометр калибруют. Для этого пикнометр наполняют при помощи пипетки дистиллированной свежепрокипяченной и охлажденной до 18—20°С водой выше метки, погружают его в термостат и выдерживают при температуре 20° (с точностью до 0,1°) в течение 15— 20 мин (в зависимости от объема пикнометра). В это время нарезают полоски фильтровальной бумаги, которые свободно проходят в шейку пикнометра, и достают поверхность жидкости в нем. Через 15—20 мин (жидкость в пикнометре примет температуру термостата), не вынимая пикнометра из термостата, отбирают полосками фильтровальной бумаги избыток воды в пикнометре, доводя ее до метки на шейке.

Пикнометр закрывают пробкой и вынимают из термостата, тщательно вытирают снаружи фильтровальной бумагой, а затем льняной тряпочкой, не оставляющей волокон, выдерживают в весовой комнате 15—20 мин и взвешивают. Из 6—7 результатов, отличающихся между собой не более ±0,005 г, берут среднюю величину и находят объем пикнометра по формуле

, (14)

где g1 масса пустого пикнометра, г; g2 — среднее значение массы пикнометра с водой при 20°C, г; 0,99823 — масса 1 см3 воды при 20°С.

В дальнейшем объем пикнометра считают постоянным. Калибровку пикнометра периодически проверяют. Затем воду из пикнометра выливают, ополаскивают спиртом и высушивают в сушильном шкафу при температуре 100°С, охлаждают и сухой пипеткой наливают в него анализируемое вещество выше метки, после чего помещают в термостат при 20°С и производят определение точно так же, как при калибровке пикнометра.

Вычисление производят по формуле

, (15)

где g1 масса пустого пикнометра, г; g2 масса пикнометра с анализируемым веществом, г; v — объем пикнометра, найденный при калибровке, см3.

При определении плотности темных продуктов уровень жидкости в пикнометре устанавливают по верхнему мениску, а светлых — по нижнему, в зависимости от этого соответственно производят и калибровку пикнометра.

Показатель преломления является характерной константой вещества. При переходе светового луча А (рис.3) из воздуха на поверхность какого-либо тела он частично отражается (луч Б), а частично проходит внутрь тела (луч В); при этом он изменяет свое направление, т.е. преломляется.

Отношение синуса угла падения к синусу угла преломления называется показателем преломления n:

.

Рис. 3
Показатель преломления зависит от длины волны падающего луча. Чаще всего определяют показатель преломления для желтой линии натрия (D) с длиной волны λ = 589 нм. Кроме того, он зависит от температуры. С повышением температуры показатель преломления понижается. Поэтому необходимо указывать температуру, при которой проводилось определение ().

Часто для различных расчетов и сопоставлений плотность и показатель преломления объединяют в комплексные константы. К ним относятся: удельная рефракция, рефрактометрическая разность, удельная дисперсия.

Для удельной рефракции (r) Гладстон и Дэйл предложили формулу

. (16)

Однако чаще пользуются формулой Л. Лоренца и Г. Лорентца:

. (17)

В обеих формулах и ρ — для одной и той же температуры.

Произведение удельной рефракции на молекулярную массу называется молекулярной рефракцией:

;   , (18)    

где М— молекулярная масса, V— молекулярный объем исследуемого вещества.

Молярная рефракция не зависит от агрегатного состояния вещества и температуры. Её физический смысл – сумма объёмов молекул одного моля вещества равна молекулярной рефракции. Молекулярная рефракция обладает аддитивностью для индивидуальных веществ. Кроме того, молекулярная рефракция равна сумме атомных рефракций и инкрементов связей. Значения последних приведены в табл. 1. На основании большого числа экспериментальных данных было установлено, что удлинение молекулы на одну метиленовую группу (СН2) вызывает увеличение молекулярной рефракции на 4,6 единицы.

Рефрактометрическая разность Ri (параметр рефракции, интерцепт рефракции) предложена Куртцом и Уором:

. (19)

Эта константа интересна тем, что она имеет постоянное или близкое к нему значение для отдельных классов углеводородов (табл. 2).

Знание рефракций позволяет оценить состав фракций.

Таблица 1. Значения атомных рефракций и инкрементов связей

Атом Атомная рефракция (инкремент связей)
Водород (Н) 1,100
Углерод (С) 2,418
Кислород (О):  
эфирный 1,643
гидроксильный 1,525
карбонильный 2,211
Хлор (Cl) 5,967
при карбонильной группе 6,366
Йод (I) 13,900
Бром (Br) 8,865
Азот (N):  
аминный первичный 2,328
аминный вторичный 2,502
аминный третичный 2,840
нитрильный (СN) 3,118
имидный 3,776
Сера (S) 7,690
Двойная связь 1,733
Тройная связь 2,398
Трехчленный цикл 0,71
Четырехчленный цикл 0,46

Таблица 2. Рефрактометрическая разность (Ri) углеводородных рядов

Гомологический ряд Ri Гомологический ряд Ri
Алканы 1,0461 Полициклические нафтены   1,0285
Моноциклические нафтены 1,0400 Моноциклические ароматические 1,0627

Определение. Стандартные определения проводят при температуре 20°С. Прибор, с помощью которого проводят определение показателя преломления, называют рефрактометром (рис.4). Показатель преломления определяют для того, чтобы установить чистоту индивидуальных соединений, а также для определения состава бинарных углеводородных смесей. Показатель преломления входит в расчетные формулы при определении структурно-группового состава фракций 200-540°С.

Перед определением показателя преломления откидывают верхнюю половину призмы рефрактометра (верхнее полушарие измерительной головки) и промывают ее поверхность диэтиловым эфиром (или этиловым спиртом, ацетоном) с помощью пипетки, затем протирают ватой или мягкой тканью. После этого на поверхность призмы наносят две-три капли исследуемого нефтепродукта и накрывают второй половиной призмы. Наблюдая в окуляр трубы, с помощью специальных винтов устанавливают четкую границу между темной и светлой половинами поля и совмещают эту границу с точкой пересечения креста (рис.5). По шкале определяют показатель преломления с точностью до четвертого знака[2]. После определения призму рефрактометра открывают и снова промывают эфиром. Если при определении показателя преломления температура окружающей среды отличалась от 20°С, необходимо внести температурную поправку. Для большинства органических жидкостей при повышении температуры на 1 градус показатель преломления в среднем понижается на величину 0,00045. Зависимость показателя преломления от температуры выражается следующей формулой:

, (19)

где t – температура, при которой проводилось определение; 0,00045 - поправочный коэффициент.

Вязкость. Вязкостью, или внутренним трением, называют свойство жидкости сопротивляться взаимному перемещению ее частиц, вызванному действием приложенной к жидкости силы. Для жидкостей вязкость при данной температуре и давлении является постоянной физической величиной.

Определение кинематической вязкости обязательно для таких нефтепродуктов, как дизельное топливо и масла.

Определение кинематической вязкости заключается в измерении времени истечения определенного объема испытуемой жидкости под действием силы тяжести. Испытания проводят в капиллярных стеклянных вискозиметрах (рис.6), причем вискозиметр подбирают с таким диаметром капилляра, чтобы время истечения жидкости составляло не менее 180 с.

Для калибровки вискозиметра Оствальда, т.е. для определения его постоянной, можно применять эталонные жидкости, кинематическая вязкость которых при разных температурах известна, или калибровочные масла.

Определение константы капилляра проводят следующим образом. В колено 2 вискозиметра, тщательно промытого петролейным или серным эфиром, этиловым спиртом и дистиллированной водой и высушенного чистым воздухом, вводят пипеткой 4 мл эталонной жидкости, вязкость которой при данной температуре точно известна. Затем через резиновую трубку с грушей, надетой на колено 1, засасывают жидкость выше верхней метки 3 (М1). При наполнении вискозиметра необходимо следить за тем, чтобы в капилляре и шариках не образовывалось пузырьков воздуха, разрывов и пленок. После наполнения вискозиметра в бане устанавливают температуру, при которой известна вязкость эталонной жидкости, с точностью ±0,1° и выдерживают вискозиметр не менее 20 мин. После этого открывают кран, вставленный в конце резиновой трубки, а когда уровень жидкости в колене 1 пройдет мимо верхней метки, пускают в ход секундомер. Следят за опусканием жидкости в колене от верхней (3 или М1) до нижней (5 или М2) метки. Секундомер останавливают в тот момент, когда жидкость пройдет нижнюю метку, и замечают время истечения жидкости от верхней до нижней метки. Измерения повторяют не менее 5 раз. Постоянную вискозиметра в сантистоксах вычисляют по формуле:

, (20)

где τ – время истечения эталонной жидкости при температуре опыта, с; νt – вязкость эталонной жидкости при температуре опыта, сСт.

Значение К определяют как среднее арифметическое из пяти изменений.

После определения постоянной вискозиметра проводят определение вязкости нефти или нефтепродукта. В тщательно промытый и высушенный вискозиметр вводят пипеткой определенное количество обезвоженного и профильтрованного нефтепродукта. При анализе вязкого нефтепродукта вискозиметр заполняют засасыванием этого продукта через колено 1. Для этого вискозиметр перевертывают и колено 1 погружают в сосуд с испытуемым нефтепродуктом. При помощи резиновой трубки с краном, надетой на колено 2 вискозиметра, и резиновой груши или водоструйного насоса, присоединенного к нему, производят заполнение вискозиметра испытуемым нефтепродуктом. Если при этом заполнение происходит медленно, допускается подогревание испытуемого продукта. Определение производят так же, как при определении постоянной вискозиметра. Измерение времени истечения испытуемого продукта производят не менее трех раз и принимают среднее арифметическое значение. При работе с вискозиметром необходимо строго следить за тем, чтобы в шариках и капиллярах не образовывалось пленок, которые нарушают режим истечения.

Кинематическую вязкость νt испытуемого продукта вычисляют по формуле:

νt = К´τ, сСт, (21)

где τ – время истечения испытуемого продукта, с.

Затем вычисляют динамическую вязкость исследуемого нефтепродукта (η, мПа´с) по формуле

η = ν´ρ, (22)

где ν – кинематическая вязкость (мм2/с); ρ – плотность при той же температуре определения.

Пример. Определить кинематическую вязкость дизельного масла при температуре 100°С. Диаметр капилляра вискозиметра 0,8 мм. К = 0,03312 сСт/с. Время истечения масла при 100° — 5 мин 22 с, 5 мин 18 с и 5 мин 20 с.

Среднее время истечения равно 320 с. Тогда сСт.

Рис. 7. Прибор для определения температуры застывания
Температура застывания – температура, при которой нефть или нефтепродукт в стандартных условиях теряет подвижность. Для нефтей температура застывания может изменяться в довольно широких пределах: от -62 до +35°С. От температуры застывания нефтей и нефтепродуктов зависят условия их транспортировки, хранения, эксплуатации. На температуру застывания нефти и нефтепродуктов существенное влияние оказывает содержание парафинов. Высокое содержание твердых парафинов повышает температуру застывания, что создает определенные трудности при добыче и при эксплуатации нефтепроводов и нефтехранилищ.

Определение температуры застывания проводят следующим образом. Пробу нефти (нефтепродукта) наливают в сухую чистую стеклянную пробирку до метки (на расстоянии 30 мм от дна пробирки), так, чтобы она не растекалась по стенкам пробирки. Пробирку с анализируемой пробой и термометром помещают в водяную баню и термостатируют при 50°С, пока нефть (нефтепродукт) не примет эту температуру. Затем пробирку вынимают из бани, насухо вытирают и вставляют ее в муфту (рис.7). Собраный прибор закрепляют в штативе в вертикальном положении. Когда анализируемая проба охладится до 35°С, прибор опускают в охлаждающую смесь. Температура охлаждающей смеси должна быть на 5°С ниже предполагаемой температуры застывания нефти (нефтепродукта). Когда анализируемая проба примет предполагаемую температуру, прибор вынимают из охлаждающей смеси и наклоняют под углом 45° и выдерживают в течение 1 мин. Если мениск анализируемого продукта смещается, охлаждение продолжают. Проверку подвижности нефтепродукта проводят через каждые 2°С. За температуру застывания принимается температура, при которой мениск исследуемого продукта остается неподвижным при наклоне под углом 45° в течение одной минуты.

Определение повторяют. Расхождения между параллельными результатами не должны превышать 2°С. За температуру застывания нефтепродукта принимается среднее арифметическое значение двух параллельных определений.

Контрольные вопросы

1. Что такое плотность вещества?

2. Что такое «водное число» пикнометра?

3. Как изменяется плотность с увеличением молекулярной массы углеводородов?

4. Что такое показатель преломления?

5. Какие факторы влияют на значение показателя преломления?

6. Как изменяется показатель преломления вещества с повышением температуры?

7. Что показывает кинематическая вязкость нефти?

8. Для каких нефтепродуктов особенно важен показатель вязкости?

9. Какой фактор прежде всего определяет температуру застывания нефти?

Лабораторная работа № 2. Первичная перегонка нефти

Нефть представляет собой сложную смесь органических веществ, главным образом углеводородов.

Перегонка нефти – процесс разделения ее на фракции по температурам кипения - лежит в основе переработки нефти в моторное топливо, смазочные масла и другие ценные химические продукты. С перегонки нефти начинают также изучение ее химического состава.

Основные фракции и продукты, которые получают при прямой перегонке нефти:

1. Бензиновая фракция (от начала кипения до 180°С) - смесь легких метановых (C5-C9), ароматических и нафтеновых углеводородов.

2. Керосиновая фракция (180-270°С) - содержит углеводороды C10-C15, используется в качестве компонента моторного топлива для реактивных и дизельных двигателей, для бытовых нужд (осветительный керосин).

3. Газойлевая фракция (270-350°С) содержит углеводороды C16-C20, может быть использована в качестве компонента дизельного топлива, а также в качестве сырья для крекинга.

4. Мазут - нефтяной остаток, кипящий выше 350°С. Разгонка мазута на фракции осуществляется в вакууме для предотвращения его термического разложения. При этом получают технические масла: соляровое, трансформаторное, веретенное, машинное и др.

Порядок работы. В колбу Вюрца (рис. 8) объемом 100 мл наливают 50 мл сырой нефти. Колбу закрывают пробкой с термометром и через отводную трубку соединяют с холодильником, к концу которого присоединяют аллонж. Массу взятой нефти вычисляют по формуле: m = V´ρ, где V - объем нефти, мл; ρ - плотность нефти, г/мл.

Рис. 8. Стандартный прибор на шлифах для перегонки жидкостей. (Нагревательные приборы, подводы охлаждающей жидкости и штативы не показаны): 1- термометр; 2- шлиф или резиновая муфта; 3- насадка Вюрца; 4- колба Вюрца; 5- слив охлаждающей воды; 6- холодильник; 7- подача охлаждающей воды; 8- приемник

 

В качестве приемника используют три небольшие конические колбы, которые предварительно взвешивают.

Колбу Вюрца осторожно нагревают на песчаной или жидкостной бане (при необходимости использовать асбестовую сетку). Отмечают начало кипения (н.к.) первой фракции и отбирают продукт, выкипающий до 180°С. При достижении температуры отгоняющихся паров 135°С прекращают подачу воды в холодильник. При температуре отгоняющихся паров 180°С колбу-приемник меняют. Во второй приемник отбирают керосиновую фракцию с интервалом температуры кипения 180-270°С. Газойлевую фракцию (270-350°С) отбирают в третий приемник.

Приемники с отобранными дистиллятами взвешивают и по разности определяют массу каждой фракции. Затем при помощи мензурок определяют объем каждой фракции и вычисляют их плотность (вычисленная плотность). Убедитесь, что плотность фракций растет с увеличением температуры их кипения.

После этого аналогичные фракции от всех опытов сливают в одну мензурку, плотность всех фракций определяют с помощью ареометров (экспериментальная плотность). Полученные данные сравнивают с вычисленными. Результаты перегонки заносят в таблицу и составляют материальный баланс перегонки.

При необходимости проведения вакуумной разгонки используют прибор, представленный на рис. 9.

Рис. 9. Прибор для перегонки под вакуумом: 1 – насадка Кляйзена; 2 – алонж.

Обработка результатов

1. Определение температур кипения фракций. В ходе разгонки определяется температура начала кипения и окончания отбора фракции. Рассчитывается средняя температура кипения как среднее арифметическое. Результаты оформляются в виде таблицы:

 
Результаты фракционирования:

Фракция Температура, °С Количество фракции
начала отбора окончания отбора г мл
Исходный объем        
         
         
         
Остаток        
Потери        
Всего        

2. По значениям средней температуры рассчитывается средний молекулярный вес фракции по формуле

.

3. Определение плотности фракций пикнометрическим методом.

Взвешивается пустая колба; затем в неё вносится с помощью пипетки или цилиндра измеренный объём фракции, закрывается пробкой и взвешивается. По разности находится вес жидкости. Плотность рассчитывается по формуле

.

Приведение значения плотности к температуре 20°С, если температура измерения существенно (на 5-8°С и более) отличается от 20°С, по формуле

.

4. Оценка состава фракции по плотности и молекулярной массе.

Для разных классов соединений известны следующие формулы:

Алканы: ;

Алкилциклопентаны: ;

Алкилциклогексаны: ;

Алкилбензолы: .

Используя полученные в п.2 значения средней молекулярной массы, рассчитывают плотность фракций и сравнивают с рассчитанной по приведенным для разных классов углеводородов формулам. Делают предварительный вывод о составе фракций (о преобладании углеводородов определенного строения).

5. Определение показателя преломления фракции.

Определение проводится на рефрактометре, записывается значение и температура измерения. Если температура измерения сильно отличается от 20°С, вводим поправку по формуле:

.

6. Оценка состава фракции по показателю преломления и молекулярной массе. Для разных классов соединений известны следующие формулы:

Алканы: ;

Алкилциклопентаны: ;

Алкилциклогексаны: ;

Алкилбензолы:.

7. Расчет удельной и молекулярной рефракции по формулам

, .

8. Расчет рефрактометрической разности (интерцепт рефракции) по формуле

.

9. Оценка состава фракции по интерцепту рефракции.

Проводится по значениям: алканы: Ri = 1,0461; нафтены моноциклические 1,0400; нафтены полициклические 1,0285; моноциклические арены 1,0627.

10. Результаты оформляются в виде таблицы:




Поделиться с друзьями:


Дата добавления: 2014-10-17; Просмотров: 1132; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.