КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Азотирование
Азотированием называется процесс насыщения поверхности стали азотом с целью повышения твердости (до 72 НRC), износоустойчивости поверхности, усталостной прочности и коррозионной стойкости деталей. Основоположником азотирования стали является русский ученый проф. Н.П.Чижевский, который впервые5 исследовал и применил этот процесс. Азотирование проводят при температурах 500-520º С в течении 8-90 ч. Глубина азотированного слоя - 0,1 – 0,8 мм. По окончании процесса азотирования детали охлаждают до 200-300º С вместе с печью в потоке аммиака, а затем на воздухе. Повышение температуры ускоряет процесс, но снижает твердость азотированного слоя. Для нагрева деталей служат специальные печи, в которые подается аммиак NH3. при нагреве аммиак разлагается: 2NH33H2 + 2Nатомарный. Атомарный азот N поглощается поверхностью стали и проникает в глубь детали. В поверхностном слое азот образует химические соединения – нитриды (железа Fe2N, хрома CrN, молибдена МоN, алюминия АlN), которые придают стали большую твердость (до 1200 НV). Азотирование проводят по одноступенчатому и двухступенчатому режимам. По одноступенчатому режиму азотируют инструмент из быстрорежущей стали (метчики, зенкеры, сверла, фрезы). Стойкость такого инструмента повышается в 2-3 раза. Двухступенчатое азотирование применяют для упрочнения штампов горячей штамповки. На первой ступени процесс ведется при 500-590º С в выдержкой 8-10 ч, на второй ступени – при 570-590º С в течение 18-20 ч. Детали охлаждают вместе с печью до 200º С. При двухступенчатом режиме азотированный слой получается с меньшей хрупкостью. Азотированию с целью повышения твердости поверхности подвергают зубчатые колеса, гильзы, валы и другие детали из сталей 38ХМЮА, 38ХВФЮА, 18Х2Н4ВА, 40ХНВАи др. Азотирование – последняя операция в технологическом процессе изготовления деталей. Антикоррозионное азотирование любых сталей выполняют на небольшую глубину при температурах 600-700º С в течении 1-2 ч. Такое азотирование часто совмещают с закалкой при 770-850º С (стали У8, У10 и др.) с выдержкой 10-15 мин и охлаждением в воде или масле. Жидкостное азотирование выполняется в расплавленных цианистых солях (40 % KCNO и 60 % NaCN), через которые при 570º С в течении 1-3 ч пропускают кислород. Толщина азотированного слоя – 0,15-0,5 мм. В результате распада солей в сталь диффундирует азот, на поверхности деталей образуется тонкий слой карбонитрида Fe3(CN) с высоким сопротивлением износу и коррозии. Азотированный слой не склонен к хрупкому разрушению. Твердость азотированного слоя углеродистых сталей – до 350 HV, легированной – до 1100 HV. Ионное азотирование осуществляется в герметичном контейнере, в котором создается разряженная азотосодержащая атмосфера. Для этой цели применяют чистый азот, аммиак или смесь азота и водорода. Размещенные внутри контейнера детали подключают к отрицательному полюсу источника постоянной электродвижущей силы. Они играют роль катода. Анодом служит корпус контейнера. Между катодом и анодом включают высокое напряжение (500-1000 В) – происходит ионизация газа. Образующиеся положительно заряженные ионы азота устремляются к отрицательному полюсу – катоду. Электрическое сопротивление газовой среды вблизи катода резко возрастает, вследствие чего почти все напряжение, подаваемое между анодом и катодом, падает на сопротивление вблизи катода. Возле катода создается высокая напряженность электрического поля. Ионы азота, входя в эту зону высокой напряженности, приобретают большие скорости и, ударяясь о деталь (катод), внедряются в ее поверхность. Высокая кинетическая энергия, которой обладают ионы азота, переходит в тепловую. Деталь за короткое время (15-30 мин) разогревается до 450-580º С, происходит диффузия азота в глубь металла, т.е. азотирование. При соударении ионов с поверхностью детали ионы железа выбиваются с ее поверхности, за счет чего обеспечивается очистка поверхности от окисных пленок, препятствующий азотированию. Это особенно важно для азотирования коррозионно-стойких сталей, у которых пассивирующая пленка обычными способами удаляется с большим трудом.
Цианирование. Процесс представляет собой одновременное насыщение поверхности стали углеродом и азотом для придания ей высокой твердости, сопротивляемости истиранию и коррозионной стойкости. Результаты цианирования определяются глубиной слоя, а также концентрацией углерода и азота в поверхностном слое и зависят от температуры и продолжительности процесса. Повышение температуры приводит к увеличению содержания углерода в слое, снижение – к росту содержания азота. В зависимости от температуры различают три вида цианирования: низко-, средне- и высокотемпературное. Низкотемпературное цианирование производиться при 550-570 º С в соляных ваннах, содержащих около 40 % цианистого калия (KCN) и 60 % цианистого натрия (NaCN), через которые пропускают сухой воздух. Насыщение стали азотом в этом случае происходит больше, чем углеродом. Низкотемпературное цианирование применяется с целью повышения твердости, износостойкости и теплостойкости инструмента из быстрорежущей стали, а также деталей из среднеуглеродистых сталей. Продолжительность процесса 0,5-3 ч. Глубина цианированного слоя – 0,0015-0,04 мм. среднетемпературное цианирование выполняется при 820-860º С в расплавленных солях, содержащих 40 % цианистого натрия (NaCN), 40 % хлористого натрия (NaCl), и 20 % кальцинированной соды (Na2CO3). Глубина цианированного слоя - 0,15-0,35 мм. детали закаливают прямо из цианистой ванны, а затем отпускают при 180-200º С. Твердость цианированного слоя после термической обработки – 52-62 HRC. Цианированный слой содержит 0,8-1,2 % азота и 0,6-0,7 % углерода. Высокотемпературное цианирование проводится при 930-960º С в расплавленных солях, содержащих 8 % цианистого натрия, 10 % хлористого натрия и 82 % хлористого бария (BaCl)2. Продолжительность процесса 1,5-6 ч. Глубина цианированного слоя – 0,15-2 мм. после цианирования детали сначала охлаждают на воздухе, а затем подвергают закалке и низкому отпуску. Твердость цианированного слоя после термической обработки – 63-65 HRC. Цианированный слой содержит 0,2-0,3 % азота и 0,8-1,2 % углерода. Нитроцементацией называется процесс химико-термической обработки, при котором происходит одновременное насыщение поверхностных слоев стальных изделий в газовой среде. Процесс осуществляется в газовой смеси из науглероживающего газа и диссоциированного аммиака при 850-870º С, время выдержки -2-10 ч, толщина получаемого слоя -0,2-1 мм. После нитроцементации детали закаливают и затем подвергают низкому отпуску при 160-180º С. Твердость поверхностного слоя -60-62 HRC. Диффузионная металлизация. Диффузионное насыщение поверхностного слоя стали металлом с целью изменения его состава и структуры называется диффузионной металлизацией. Алитирование – процесс насыщения стальных и чугунных деталей алюминием с целью повышения их жаростойкости. Алитирование осуществляется в порошкообразных смесях, в ваннах с расплавленным алюминием при температурах 700-800º С в течении 45-90 мин, а также напылением с последующим диффузионным отжигом при 900-1000º С. Толщина алитированного слоя -0,2-1 мм. Алитированию подвергают детали из низкоуглеродистой и среднеуглеродистой стали, специальной стали и серого чугуна. Хромирование – диффузионное насыщение поверхностного слоя стали хромом с целью повышения коррозионной стойкости, жаростойкости, твердости и износостойкости. Для хромирования используются жидкая, твердая и газообразная среды. Процесс ведут при 900-1100º С в течении 5-20 ч. Толщина слоя – 0,1-0,3 мм, твердость хромированного слоя средне- и высокоуглеродистой стали -1200-1300 HV. Силицирование – процесс диффузионного насыщения стали кремнием, обеспечивающий повышение коррозионной стойкости и жаростойкости поверхностей стальных деталей, а также резкое увеличение жаростойкости молибдена и некоторых других металлов и сплавав. Силицирование проводят в порошкообразных смесях, 30 % окиси алюминия и 1 %хлористого аммония, а также в газовой среде во вращающихся ретортах, в которых происходит разложение хлорида кремния (SiCl4), при 950-1050º С с выдержкой 2-5 ч. Толщина силицированного слоя – 0,5-1 мм, твердость -200-300 HV. Борирование – диффузионное насыщение поверхностного слоя стали бором с целью повышения твердости, коррозионной стойкости, теплостойкости и жаростойкости поверхности стальных деталей. Толщина борированных слоев не превышает 0,3 мм, твердость 1800-2000 HV. Недостаток борированного слоя – хрупкость.
Методы поверхностной закалки. Поверхностной закалкой называют процесс термической обработки, представляющий собой нагрев поверхностного слоя стали до температуры выше точки Ас3 для доэвтектоидной стали и выше точки Ас1 для заэвтектоидной стали и последующее охлаждение с целью получения в поверхностном слое структуры мартенсита. Поверхностную закалку применяют для повышения износостойкости деталей и сопротивления усталости при сохранении высокого сопротивления динамическим нагрузкам благодаря высокой пластичности сердцевины.
Поверхностная закалка при нагреве ТВЧ (током высокой частоты). (Рис.60.) В настоящее время широко распространена поверхностная закалка с индукционным нагревом токами высокой частоты. Индукционный нагрев металла достигается путем индуцирования вихревых токов. Электромагнитное поле создается индуктором, подключенным через трансформатор напряжения к источнику переменного тока. Процесс нагрева токами высокой частоты осуществляется следующим образом. Изделие, подлежащие нагреву, помещают внутрь спирали из медной трубки, т.е. в индуктор. Через индуктор пропускают ток высокой частоты большой силы, который создает вокруг изделия мощное переменное магнитное поле, в результате чего изделие перемагничивается много раз в секунду, в нем возникают короткозамкнутые вихревые токи. Продолжительность нагрева ТВЧ весьма мала – она исчисляется секундами. Таким образом, изделие нагревается находящимися в нем электрическими токами, роль индуктора – возбудить эти токи. После нагрева изделия до требуемой температуры его охлаждают. В зависимости от формы, размеров закаливаемых деталей и предъявляемых к ним требований способы высокочастотной закалки разделяются на три группы (Рис.61.). При закалки небольших деталей применяют способ одновременной закалки. В этом случае вся поверхность закаливаемой детали находится в зоне действия индуктора и нагревается одновременно. По окончании нагрева реле времени отключает индуктор от генератора и включается водяной душ, который одновременно охлаждает всю деталь. Детали значительной длины закаливают непрерывно-последовательным способом. Закаливаемая деталь вращается вокруг вертикальной оси, а также перемещается внутри индуктора сверху вниз, последовательно проходя через зону нагрева и охлаждения закалочного устройства. Если необходимо закалить отдельные части детали, то применяют способ последовательной закалки. При этом способе закаливаемая поверхность нагревается и охлаждается по частям.
Рис.60. Закалка с индукционным нагревом ТВЧ.
Поверхностная закалка при нагреве пламенем. (газопламенный нагрев) При этом способе закалки для нагрева наиболее часто используют ацетиленокислородное пламя с температурой 3100-3200º С. При пламенной закалке применяют следующие способы (Рис.62.): одновременная закалка – стационарный и вращательный способы; непрерывная закалка – поступательный и комбинированный способы.
Рис.62.
Стационарный и вращательный способы относятся к закалке, выполняемой за две операции: сначала одновременно нагревается вся закаливаемая поверхность, а затем проводится охлаждение всей нагретой поверхности. Поступательный и комбинированный способы относят к непрерывной закалке, при которой закаливаемая поверхность подвергается закалке непрерывным перемещением через зону нагрева и охлаждения. Толщина закаленного слоя обычно составляет 2-5 мм.
Поверхностная закалка при контактном нагреве. Этот метод заключается в том, что ток из сети через понижающей трансформатор подводится к медным роликам, которые перекатываются по поверхности изделия и нагревают его. Изделие при этом служит как бы сопротивлением, включенным в цепь. Вслед за роликами движется душевое устройство; в качестве охлаждающей жидкости обычно применяется вода (Рис.63.).
Рис.63.
Поверхностная закалка при нагреве в электролите. Этот способ заключается в том, что изделие погружают в ванну с электролитом (например, 5-процентным раствором Na2CO3), через который пропускают постоянный ток напряжением 220-380 В. ванна служит анодом, а деталь- катодом, вокруг которого образуется плотный слой водорода с очень высоким сопротивлением, вследствие чего водородная рубашка быстро нагревается до температуры 1800-2000º С и в течении нескольких секунд нагревает поверхность детали до температуры выше точки Ас3. нагретую деталь закаливают в том же электролите после выключения тока или сбрасывают в закалочный бак (Рис.64.).
Рис.64.
Дата добавления: 2014-10-17; Просмотров: 1085; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |