Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Гальванический элементы. Электролиз




Направление окислительно-восстановительных реакций.

Лекции 31-32. Электродные потенциалы.

Метод электронного-ионно баланса (метод полуреакций).

При составлении уравнений ОВР этим методом записываются не схемы потери и присоединения электронов, а ионные уравнения процессов окисления и восстановления (уравнения полуреакций). В уравнения полуреакций, кроме ионов, являющихся окислителем и восстановителем, включают также в зависимости от условий воду, ионы водорода или гидроксила. Итоговое уравнение находят, суммируя уравнения полуреакций, умноженные на множители, уравнивающие число отданных и присоединенных электронов. Так, например, для реакции окисления сульфата железа(II) перманганатом калия реальными окислителем и восстановителем являются ионы MnO4- и Fe2+. Уравнения полуреакций в этом случае имеют вид:

 

MnO4- + 8H+ + 5e- = Mn2+ + 4H2O │1

Fe2+ - 1e- = Fe3+ │5

 

В уравнениях полуреакций совокупность ионов и молекул, способных присоединять электроны, называется окисленной формой (в рассмотренном примере MnO4- + 8H2O для первой и Fe3+ для второй полуреакции), а совокупность ионов и молекул, способных отдавать электроны, - вoсстановленной формой (Mn2+, Fe2+). Складывая уравнения полуреакций, умноженные на балансирующие множители (1 и 5), приходим к ионному уравнению:

 

MnO4- + 5Fe2+ + 6H+ = Mn2+ + 5Fe3+ + 4H2O

 

В качестве второго примера приведем составление уравнения реакции окисления гидрида сурьмы оксохлоратом(I) натрия в щелочной среде, протекающей по следующей схеме.

 

SbH3 + KClO + KOH ® K3SbO4 + NaCl

 

Учитывая, что SbH3 не является электролитом, приходим к уравнениям полуреакций:

 

SbH3 + 11OH- - 8e- = SbO43- + 7H2O │1

ClO- + H2O + 2e- = Cl- + 2OH- │4

 

и итоговому ионному уравнению

 

SbH3 + 4ClO- + 3OH- = SbO43- + 4Cl- + 3H2O

 

Достоинством метода ионно-электронного баланса является то, что при описании ОВР он использует только реально существующие частицы, участвующие во взаимодействии. Однако этот прием не может быть так жестко алгоритмизирован, как метод электронного баланса, и применим только для реакций, протекающих в растворах.

 

Рассмотрим процессы, которые будут наблюдаться, если металлическую пластинку (электрод) опустить в воду. Поскольку все вещества в какой-то мере растворимы, в такой системе начнет протекать процесс перехода в раствор катионов металла с их последующей гидратацией. Освобождающиеся при этом электроны будут оставаться на электроде, сообщая ему отрицательный заряд. Отрицательно заряженный электрод будет притягивать катионы металла из раствора, в результате чего в системе установится равновесие

 

M Mn+ + ne-,

 

при котором электрод будет иметь отрицательный заряд, а прилегающий к нему слой раствора - положительный. Приведенное выше уравнение описывает полуреакцию, для которой окисленной формой являются катионы Mn+, а восстановленной формой - атомы металла М.

Если в рассматриваемую систему ввести соль, отщепляющую при диссоциации катионы Mn+, равновесие сместится в сторону обратной реакции; при достаточно высоком значении концентрации Mn+ становится возможным осаждение ионов металла на электроде, который при этом приобретет положительный заряд, тогда как прилегающий к поверхности электрода слой раствора, содержащий избыток анионов, будет заряжен отрицательно. Знак заряда электрода в конечном итоге будет определяться химической активностью металла, способствующей появлению отрицательного заряда, и концентрацией катиона металла в растворе, увеличение которой способствует появлению положительного заряда. Однако в любом случае в такой системе формируется двойной электрический слой и возникает скачок потенциала на границе раздела электрод – раствор (рис. 47).

 

 

Рис. 47. Механизмы возникновения разности потенциалов на поверхности раздела металлический электрод – раствор соли металла

 

Скачок потенциала на границе раздела электрод - раствор называется электродным потенциалом.

В рассмотренном нами примере металл электрода подвергался химическим изменениям. Это условие не является обязательным для возникновения электродного потенциала. Если какой-либо инертный электрод (графитовый или платиновый) погрузить в раствор, содержащий окисленную и восстановленную формы (ОФ и ВФ) какой-то полуреакции, то на границе раздела электрод - раствор также возникнет скачок потенциала. Возникновение электродного потенциала в этом случае будет определяться протеканием полуреакции

ОФ + ne- ВФ

 

Поскольку обмен электронами идет через поверхность электрода, который в данном случае играет роль посредника, смещение равновесия в сторону прямой реакции будет способствовать появлению на электроде положительного заряда, а в сторону обратной реакции - отрицательного. Электрод при этом не будет изменяться химически; он будет лишь служить источником или приемником электронов, присоединяемых или отдаваемых частицами. Таким образом, любая окислительно-восстановительная реакция может быть охарактеризована определенным значением окислительно-восстановительного потенциала – разности потенциалов, возникающей на поверхности инертного электрода, погруженного в раствор, содержащий окисленную и восстановленную форму вещества.

Значение электродного потенциала зависит от природы и концентрации окисленной и восстановленной форм, а также от температуры. Эта зависимость выражается уравнением Нернста

 

 

где R - универсальная газовая постоянная, Т - абсолютная температура, n - число электронов, соответствующее переходу окисленной формы в восстановленную, F - число Фарадея (96485 Кл·моль-1), Cox и Cred - концентрации окисленной и восстановленной формы, x и y - коэффициенты в уравнении полуреакции, Е˚ - электродный потенциал, отнесенный к стандартным условиям (р = 101,326 кПа, Т = 298 К, Cox = Cred =1 моль/л). Величины Е˚ называют стандартными электродными потенциалами.

При температруе 298 К уравнение Нернста легко преобразуется к более простому виду:

 

 

Абсолютные значения электродных потенциалов измерить невозможно: использование любых измерительных приборов в этом случае привело бы к появлению контактных разностей потенциалов. Однако можно определить относительные значения электродных потенциалов, сравнивая измеряемый потенциал с другим, принятым за эталон. В качестве такого эталонного потенциала используют стандартный потенциал водородного электрода. Водородный электрод представляет собой платиновую пластинку, покрытую слоем пористой платины (платиновая чернь) и погруженную в раствор серной кислоты с активностью катионов водорода, равной 1 моль/л, при температуре 298 К. Платиновая пластинка насыщается водородом под давлением, равным 101,326 кПа (рис. 48). Абсорбированный платиной водород является более активным компонентом, чем платина, и электрод ведет себя так, как если бы он бы выполнен из водорода. В результате в системе возникает электродный потенциал за счет полуреакции

 

Н2 + + 2е-

Этот потенциал условно принимают равным нулю. Если окисленная форма той или иной полуреакции является более активным окислителем, чем катион водорода, значение электродного потенциала этой полуреакции будет величиной положительной, в противном случае - отрицательной. Величины стандартных электродных потенциалов приводят в справочных таблицах.

Рис. 48. Схема строения водородного электрода

 

Уравнение Нернста позволяет рассчитывать значения электродных потенциалов при различных условиях. Пусть, например, требуется определить электродный потенциал полуреакции

 

MnO4- + 8H+ + 5e- = Mn2+ + 4H2O,

 

если температура равна 320 К, а концентрации MnO4-, Mn2+ и Н+ равны соответственно 0,800, 0,0050 и 2,00 моль/л; значение Е˚ для этой полуреакции равно 1,51 В. Соответственно

 

 

Поскольку электродный потенциал связан с изменением свободной энергии Гиббса соотношением

 

ΔG˚ = -nFE˚

 

электродные потенциалы могут быть использованы для определения направления окислительно-восстановительных процессов.

Пусть окислительно-восстановительной реакции соответствуют полуреакции

 

X(1) + n1e- = Y(1); ΔG1 = -n1FE1,

X(2) + n2e- = Y(2); ΔG2 = -n2FE2

 

Cовершенно очевидно, что одна из этих полуреакций должна протекать слева направо (процесс восстановления, сопровождающийся присоединением электронов), а другая - справа налево (процесс окисления, при котором электроны теряются). Изменение энергии Гиббса для рассматриваемой реакции будет определяться разностью электродных потенциалов полуреакций

 

ΔG = aΔG2 - bΔG1 = -nF(E2 - E1)

 

где a и b - множители, уравнивающие число отданных и присоединенных в процессе реакции электронов (n = an1 = bn2). Чтобы реакция протекала самопроизвольно величина ΔG должна быть отрицательной, а это будет иметь место тогда, когда Е2 > Е1. Таким образом, в процессе ОВР из двух окисленных форм восстанавливается та, для которой электродный потенциал больше, а из двух восстановленных форм окисляется та, для которой электродный потенциал меньше. Если реакция протекает при стандартных условиях, то

 

ΔG˚ = -nF

 

и для определения ее направления достаточно сравнить электродные потенциалы полуреакций.

Пусть, например, необходимо определить направления реакции

 

MnO4- + 5Fe2+ + 8H+ = Mn2+ + 5Fe3+ + 4H2O

 

при стандартных условиях. Запишем уравнения перехода двух окисленных форм в восстановленные и по справочным таблицам найдем соответствующие значения электродных потенциалов:

 

Fe3+ + 1e- = Fe2+ │5; E= 0,77 B

MnO4- + 8H+ +5e- = Mn2+ +5Fe2+ +4H2O │1; E= 1,51 B

 

Поскольку Е> E, вторая полуреакция будет протекать слева направо, а первая полуреакция - справа налево. Таким образом, процесс будет протекать в направлении прямой реакции.

Используя значения электродных потенциалов, можно рассчитать константу равновесия ОВР. Решим эту задачу для вышеприведенной реакции. Уравнения электродных потенциалов, обеспечивающих равновесие, примут вид:

,

(концентрацию воды можно считать постоянной). Поскольку система находится в состоянии равновесия, то для нее ΔG, а, следовательно, и Е2 - Е1, равно нулю, откуда

 

Следовательно

 

где К - константа равновесия. Решая уравнение относительно К, получаем:

 

 

Данная реакция, таким образом, является практически необратимой.

Окислительно-восстановительные реакции, как уже указывалось, сопровождаются переносом электронов от восстановителя к окислителю. Если разделить процессы окисления и восстановления в пространстве, можно получить направленный поток электронов, т.е. электрический ток. Устройства, в которых химическая энергия окислительно-восстановительной реакции преобразуется в энергию электрического тока, называются химическими источниками тока или гальваническими элементами.

В простейшем случае гальванический элемент состоит из двух полуэлементов - сосудов, заполненных растворами соответствующих солей, в которые погружены электроды. Полуэлементы соединены U-образной трубкой (сифоном), заполненной раствором электролита, или полупроницаемой мембраной, что дает возможность ионам переходить из одного полуэлемента в другой. Если электроды не соединены внешним проводником, то полуэлементы находятся в состоянии равновесия, обеспечиваемым определенным зарядом на электродах. Если же цепь замкнуть, равновесие нарушается, так как электроны начнут переходить с электрода, имеющего меньший электродный потенциал, на электрод с большим электродным потенциалом. В результате в системе начнет протекать окислительно-восстановительная реакция, причем на электроде с большим значением потенциала будет идти процесс восстановления, а на электроде с меньшим значением потенциала - процесс окисления. Электрод, на котором протекает реакция восстановления, называется катодом; электрод, на котором протекает реакция окисления, называется анодом.

В качестве примера рассмотрим элемент Даниэля-Якоби, который состоит из медного и цинкового электродов, погруженных в растворы сульфатов этих металлов (рис. 49).

Рис. 49. Схема строения медно-цинкового гальванического элемента

 

В этом элементе окисленными формами являются катионы Zn2+ и Cu2+, восстановленными формами - цинк и медь. Уравнения полуреакций для системы имеют вид:

 

Zn2+ + 2e- = Zn0; E= -0,76 B

Cu2+ + 2e- = Cu0; E= 0,34 B

 

Поскольку Е> E, вторая полуреакция будет протекать справа налево, а первая полуреакция - слева направо, т.е. в системе будет протекать реакция

 

Zn + Cu2+ = Zn2+ + Cu

 

Процесс будет идти до тех пор, пока не растворится цинковый электрод или не восстановятся все ионы меди. В случае медно-цинкового элемента катодом является медный электрод (на нем ионы Cu2+ восстанавливаются до металлической меди), а анодом - цинковый электрод (на нем атомы цинка окисляются до ионов Zn2+). Электродвижущая сила элемента равна разности электродных потенциалов катода и анода, т.е.

 

ΔЕ = Екатода - Е анода

 

При стандартных условиях

 

ΔЕ = 0,34 - (-076) = 1,10 В

 

Для записи схемы гальванических элементов используют приведенную ниже форму:

 

Анод │ Анодный раствор ││ Катодный раствор │ Катод

 

Для анодного и катодного растворов указывают концентрации соответствующих ионов в момент начала работы гальванического элемента. Так, элементу Даниэля-Якоби с концентрациями CuSO4 и ZnSO4, равными 0,01 моль/л, отвечает схема:

 

Zn │ Zn2+ (0,01 M) ││ Cu2+ (0,01 M)│ Cu

 

Путем измерения ЭДС гальванических элементов определяют стандартные электродные потенциалы тех или иных полуреакций. Пусть, например, необходимо установить Е˚ полуреакции

 

Fe3+ + 1e- = Fe2+

Для этого достаточно собрать гальванический элемент

 

Pt│H2(г) (101,3 кПа), H+ (1M)││Fe3+ (1M), Fe2+ (1M) │Pt

 

и измерить его ЭДС. Последняя равна 0,77 В, откуда

 

0,77 + 0 = +0,77 В




Поделиться с друзьями:


Дата добавления: 2014-10-17; Просмотров: 760; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.