Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Имя [время_жизни_записи] IN тип_записи данные 2 страница




Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, тем медленнее сеть. Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя, поскольку на быстродействие сети влияет множество факторов, в том числе:

характеристики аппаратного обеспечения компьютеров в сети;

частота, с которой компьютеры передают данные;

тип работающих сетевых приложений;

тип сетевого кабеля;

расстояние между компьютерами в сети.

"Шина"- пассивная топология. Это значит, что компьютеры только слушают передаваемые по сети данные, но не участвуют в их перемещении от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

Электрические сигналы, распространяются по всей сети - от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить. Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают специальные устройства -терминаторы (terminators), поглощающие эти сигналы.

Кольцо (Ring). Пример кольцевой топологии приведён на рис.3.

Рис.3. Кольцевая топология

При топологии "кольцо'' компьютеры подключаются к кабелю, замкнутому в кольцо. Выход одного компьютера подключается к входу другого, каждый узел должен иметь два сетевых интерфейса. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера (повторителя), усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, функционирование сети может нарушиться. В реальной ситуации этого не случается, поскольку подсоединение узла к кольцу выполняется специальным образом.

Для создания кольцевой топологии в основном используется волоконно-оптический кабель (сеть FDDI), но допустимо использование витой пары (Token Ring). Эта топология удобна для оптоволоконных каналов, где сигнал может передаваться только в одном направлении (но при наличии двух колец, как в FDDI, возможна и двунаправленная передача).

Звезда (Star) – см. рис.4. Это самая старая сетевая топология. При топологии "звезда'' все компьютеры с помощью отдельных сегментов кабеля подключаются к одному центральному узлу.

В качестве центрального узла выступает пассивное с точки зрения обработки данных, устройство - концентратор (hub) или коммутатор. "Звезда" отличается тем,

 

Рис.4. Топология "звезда"

что не предоставляет возможности двум компьютерам в сети обмениваться данными иначе, чем с помощью посредника - центрального узла.

В сетях с топологией "звезда" подключение кабеля и управление конфигурацией сети централизованы. Так как все компьютеры подключены к центральному узлу отдельными кабелями, для больших сетей значительно увеличивается расход кабеля. К тому же, если центральный узел выйдет из строя, нарушится работа всей сети, однако в данном случае несколько компьютеров в сети могут вести передачу данных одновременно, в то время как шинная топология и топология маркерного кольца в каждый момент времени выделяют только один компьютер, которому позволено передавать данные.

Если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет. Для создания звездообразной топологии, в основном, используется кабель "витая пара". В "звезде" центром является концентратор или коммутатор, а лучами - сегменты, на концах которых находятся рабочие станции (по одной на каждый сегмент). В современной сети "звезда" может являться элементом иерархической структуры. Отличается относительно высокой стоимостью кабельной системы. Позволяет сосредоточить в одном месте все проблемы по передаче данных, по адресации. Является основой для построения структурированных кабельных систем.

Полносвязная топология. Полносвязные топологии соответствуют сети, в которой каждый узел связан со всеми остальными. Несмотря на логическую простоту, это громоздкий вариант и неэффективный. Каждый компьютер такой сети должен содержать огромное количество портов, для связи со всеми остальными компьютерами сети. Для каждой пары компьютеров должна быть выделена отдельная линия связи. При этом достигается максимальная производительность, надежность, скорость передачи. Полносвязные топологии в локальных сетях не применяются. Чаще всего этот вид топологии встречается в многомашинных комплексах. Схематично полносвязная топология представлена на рис.5.

Рис.5. Полносвязная топология.

Все другие топологии неполносвязные. Это означает, что для обмена данными между двумя конечными узлами могут потребоваться промежуточные узлы.

Ячеистая или сотовая топология. Получается из полносвязной путём удаления некоторых линий связи. Ячеистая топология допускает соединения большого количества компьютеров и характерна для крупных сетей. Применяется в глобальной сети Internet.

Используется и немалое количество других топологий, которые являются комбинациями уже названных.

Смешанная топология. Большинство более или менее крупных сетей имеют смешанную топологию, в которой можно выделить отдельные фрагменты типовых топологий (рис. 6, 7).

Рис. 6. Сеть смешанной топологии ("звезда" - "звезда")

Появление смешанных топологий обусловлено, как правило, необходимостью наращивать и модернизировать сеть. Часто суммарные затраты на постепенную модернизацию оказываются существенно большими, а результаты меньшими, чем при затратах на глобальную замену морально устаревших сетей.

Рис. 7. Сеть смешанной топологии ("звезда" – "шина").

Сети смешанной топологии обладают достоинствами и недостатками, характерными для составляющих их топологий.


4.СРЕДА ПЕРЕДАЧИ ДАНННЫХ В ВС

4.1.Классификация сред передачи данных

Физическая среда, в которой происходит передача информации, называется средой передачи данных. Можно выделить две основных среды передачи данных (рис. 8):

проводную (с применением кабелей),

беспроводную (без применения кабелей).

 

Рис. 8. Среды передачи данных.

К беспроводным средам передачи данных относятся:

Инфракрасные лучи (соединение компьютеров с помощью инфракрасных портов).

Радиоволны (передача данных между компьютерами с использованием радиоэфира).

Инфракрасная связь действует только в зоне прямой видимости (инфракрасные лучи не могут проникать сквозь стены). На ее основе может быть организована лишь небольшая (часто - временная) сеть внутри одного помещения. Такая сеть, помимо всего прочего, будет работать на довольно низких скоростях. Использование для компьютерной связи радиоволн сейчас является перспективным и быстро развивающимся направлением. Более подробно беспроводные сети будут рассмотрены ниже.

4.2.Кабельные каналы связи

Основными проводными средами передачи данных являются медь и стекловолокно. На их основе изготавливаются различные типы кабелей. Медную среду передачи данных используют такие типы кабелей как коаксиальный кабель и "витые пары" различных категорий

Кабельные каналы для целей телекоммуникаций исторически использовались первыми. И сегодня по суммарной длине они превосходят даже спутниковые каналы. В настоящее время в локальных вычислительных сетях применяется три вида кабелей:

коаксиальный (двух типов):- тонкий коаксиальный кабель (thin coaxial cable);

толстый коаксиальный кабель (thick coaxial cable);

витая пара (двух основных типов):

неэкранированная витая пара (unshielded twisted pair - UTP);

- экранированная витая пара (shielded twisted pair - STP);

волоконно-оптический кабель (двух типов):

многомодовый кабель (fiber optic cable multimode);

одномодовый кабель (fiber optic cable single mode).

За последние двадцать лет пропускная способность каналов выросла с 56 кбит/c до 1 Гбит/с. Разработаны технологии, способные работать на оптических кабелях со скоростью 50 Тбит/с. Вероятность ошибки при этом сократилась с 10-5 на бит до пренебрежимо низкого уровня. Современный же лимит в несколько Гбит/с связан главным образом с ограничением по быстродействию преобразователей электрических сигналов в оптические. Сегодня практически все сети проектируются на базе UTP и волоконно-оптических кабелей, коаксиальный кабель применяют лишь в исключительных случаях и то, как правило, при организации низкоскоростных стеков в монтажных шкафах. Поэтому наиболее подробно рассмотрим витую пару и волоконно-оптические кабели.

4.3.Кабель витая пара

Кабель витая пара получил свое название из-за использования в качестве среды передачи данных одной, двух или четырех пар скрученных медных проводников. Скрученность позволяет гасить помехи, создаваемые в каждом из проводников. Существует две основных разновидности витой пары - неэкранированная (UTP) и экранированная (STP). Неэкранированная витая пара, в свою очередь, подразделяется на несколько категорий. Отличие между UTP и STP в том, что кабель экранированной «витой пары» покрыт защитным экраном.

Неэкранированная витая пара. Сети на основе неэкранированной витой пары имеют пропускную способность от 10 Мбит/с до 1 Гбит/с) в зависимости от категории используемого кабеля, максимальную длину сегмента сети 100 м (сигнал, передаваемый по неэкранированной «витой паре», довольно быстро затухает), рекомендуемое число узлов в сети - 75 (максимально по спецификации - 1024, в реальности - сильно зависит от трафика). Понятие "сегмент сети" связано с максимальной длиной кабеля, при превышении которой уже требуется усиление передаваемых сигналов. Сам кабель сильно подвержен электромагнитным помехам, данные, передаваемые с его помощью, несложно перехватить. Однако UTP имеет невысокую стоимость, при хороших технических характеристиках UTP недороги, удобны при монтаже, их не надо заземлять. Всё это обусловливает большую популярность сетей на основе неэкранированной витой пары в офисных сетях, где отсутствуют электромагнитные помехи.

Кабели в сети должны удовлетворять определённым индустриальным стандартам. Это нужно для обеспечения совместной работоспособности устройств разных производителей. Неэкранированная витая пара UTP делится на несколько категорий:

UTP 1; 2; 3 категории – уже устаревшие стандарты;

UTP 4 категории – электрические характеристикм этого кабеля лежат в диапазоне до 20 МГц. Сегодня этот кабель устарел и применяется крайне редко;

UTP 5 категории - его электрические характеристикм лежат в диапазоне до 100МГц. Это наиболее широко применимый стандарт;

UTP 6 категории – характеристики определены до частоты 200МГц;

UTP 7 категории – характеристики определены до частоты 600МГц.

Для присоединения кабелей UTP к сетевому адаптеру и к розеткам используются специальные коннекторы RJ-45. При этом применяются специальные обжимные инструмены. Кабели UTP выпускаются в четырёхпарном исполнении. Каждый проводник имеет определённый цвет и шаг скрутки. Не во всех кабелях для передачи данных используются все линии. Не рекомендуется восстанавливать повреждённые UTP или STP кабели, повреждённый кабель следует заменить новым.

Экранированная витая пара STP. Эти кабели различаются по материалу экрана:

STP - экранирование медной оплеткой;

FTP - экранирование фольгой;

SFTP - экранирование медной оплеткой и фольгой.

Эти кабели имеют хорошие технические характеристики, но дороги, из-за жёсткости неудобны в работе, требуют заземления. Используются в условиях, требующих защиты кабельных коммуникаций от помех. В зависимости от характеристик делятся на типы:

type 1; type2;type 3;type 5;type 9.

Начиная с type 5, кабели имеют скоростные характеристики, аналогичные характеристикам волоконно - оптических кабелей. Сети на основе экранированной "витой пары" имеют более высокую скорость передачи (теоретически: до 500 Мбит/с на расстояние 100 м), максимальную длинную сегмента сети 100 м (сигнал, передаваемый по STP и UTP затухает одинаково быстро), максимальное число узлов по спецификации - 270, а за счет наличия экрана такие сети в значительно меньшей степени подвержены электромагнитным помехам. Данные, передаваемые посредством экранированной витой пары перехватить сложнее. В тоже время экранированная витая пара имеет большую стоимость и более трудную прокладку, чем неэкранированная.

Неэкранированная витая пара, и особенно 5 категории, сейчас доминирует в ЛВС. Это связано с резким улучшением его характеристик в последнее десятилетие. Например, скорость передачи витой пары UTP 5 категории при применении стандарта Gigabit Ethernet составляет 1000 Мбит/с при ограниченном сегменте (до 25 м.).

4.4.Волоконно-оптические кабели

Особенности волоконно-оптических кабелей:

по оптической линии связи можно передавать луч света, являющийся источником сигнала, со скоростью порядка 1Тбит/с. По одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов;

имеют очень малое затухание светового сигнала в волокне;

волокно изготавливается из недорогого материала – кварца.

оптические волокна очень компактны и легки, имеют диаметр около 100 мкм. Для изготовления применяется особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении;

системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Важное свойство оптического волокна -долговечность.

Минусы:

из-за точности соединений необходимы дорогостоящие компоненты;

для монтажа оптических волокон требуется прецизионное, а потому дорогое технологическое оборудование. Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями. Кабель также подвержен влиянию различных климатических условий

На основе оптоволокна изготавливаются многомодовые и одномодовые волоконно-оптические кабели, различающиеся по траектории прохождения световых лучей.

В одномодовом кабеле все лучи проходят практически один и тот же путь и одновременно достигают приемника. В многомодовом кабеле траектории лучей имеют существенный разброс, что приводит к искажению информации при передаче на большие расстояния. Соответственно, сети на одномодовых кабелях имеют большую пропускную способность и максимальную длину сегмента. В то же время они отличаются более высокой стоимостью по сравнению с многомодовыми. На рис.9 представлены типы световодов. на рисунке введены обозначения: n1 - материал волокна, n2 – среда передачи светового луча.

Рис.9. Типы световодов: а)одномодовое волокно, б)многомодовое волокно

В одномодовом волокне диаметр световодной жилы порядка 8-10 мкм, то есть сравним с длиной световой волны. При такой геометрии в волокне может распространяться только один луч (одна мода). В многомодовом волокне размер световодной жилы порядка 50-60 мкм, что делает возможным распространение большого числа лучей (много мод).

В настоящее время использование оптоволокна становится все более популярным, в том числе, вследствие снижения его стоимости. Сети, построенные на основе оптоволокна, имеют чрезвычайно высокую практическую скорость передачи (от 100 Мбит/с до 2 Гбит/с и более), не подвержены действию электромагнитных помех, а сигнал, передаваемый по оптоволокну, имеет низкое затухание, что позволяет прокладывать его на значительные расстояния, измеряемые километрами. Оптоволокно не дает утечки сигнала, что делает его надежным в плане перехвата информации. Вместе с тем, как сам кабель, так и оборудование к нему и работы по его прокладке отличаются существенно большей стоимостью по сравнению с медными средами передачи данных. Изображение волоконно-оптического кабеля приведено на рис.10.

 

 

Рис.10. Волоконно-оптические кабели

Длина сегмента для разных передающих сред приведена в табл.1

Таблица 1

Тип кабеля Длина сегмента
Витая пара 100 м
Тонкий коаксиальный 185 м
Толстый коаксиальный  
Оптоволоконный одномодовый кабель 2000 м (с применением специальных средств до 40 - 90 км)
Оптоволоконный многомодовый кабель 1000 м

 

4.5.Основные характеристики кабелей

Помимо разделения на типы и категории, каждый кабель имеет определённые характеристики. Рассмотрим их. Выше мы уже оперировали характеристикой скорости передачи.

Скорость передачи данных. Это фактическая скорость потока данных, прошедшего через сеть. Измеряется в бит/с.

Пропускная способность. Это максимально возможная скорость передачи, измеряется также в бит/с. Поскольку бит/с – очень малая величина для оценки пропускной способности, на практике применяют Мбит/с.

Качество передачи данных. О пределяется параметром Bit Error Rate, или, сокращённо, BER – количество ошибок на бит. На современных линиях связи этот параметр довольно низок – от 10-4до 10–9.

Полоса пропускания. О пределяет непрерывный диапазон частот синусоидального сигнала, при которых этот сигнал передаётся по кабелю без значительных искажений. Между пропускной способностью и полосой пропускания существует определённая зависимость. Есть несколько формул, определяющих эту зависимость, например, формула Шеннона:

C=F*log2(1 + SNR),

где:

C – максимальная пропускная способность, бит/с;

F – ширина полосы пропускания линии, Гц;

SNR – соотношение сигнал/шум, дБ.

Из формулы видно, что для повышения пропускной способности линии следует увеличивать ширину полосы пропускания либо снижать уровень шума, что технически трудно осуществить. Есть ряд характеристик кабелей, связанных с потерями в линии. Основные из них приведены ниже.

Затухание (Attenuation). Это относительное уменьшение амплитуды сигнала или его мощности при передаче линии сигнала определённой частоты. Измеряется в децибелах на метр. По причине затухания сигнала длина линий ограничена и строго оговаривается в стандартах локальных сетей.

Волновое сопротивление. Это полное сопротивление сети, его также называют импедансом. Единица измерения – Ом. Это постоянная для определённого кабеля величина. Для UTP 5 категории импеданс равен 100 Ом. Изменение волнового сопротивления может быть связано с некачественной заделкой кабеля, низким качеством разъёма и др.

Активное сопротивление. Это сопротивление постоянному току. Активное сопротивление зависит от длины и сечения кабеля.

В сети также существуют помехи: электрический шум, перекрёстные наводки на ближнем конце (NEXT), возвратные потери. Эти факторы искажают сигнал, специалисты применяют для борьбы с помехами специальные методы защиты.

 

 


5. МЕТОДЫ КОММУТАЦИИ В ВЫЧИСЛИТЕЛЬНЫХ СЕТЯХ

5.1.Понятие коммутации

Комплекс технических решений обобщенной задачи коммутации в совокупности составляет базис любой сетевой технологии. От того, какой механизм прокладки маршрутов, продвижения данных и совместного использования каналов связи заложен в той или иной сетевой технологии, зависят ее фундаментальные свойства. Среди множества возможных подходов к решению задачи коммутации абонентов в сетях выделяют два основополагающих:

коммутация каналов (circuit switching);

коммутация пакетов (packet switching).

Коммутируемой транспортной сетью назывался сеть, в которой между двумя (или более) конечными пунктами устанавливается связь по запросу. Примерами таких сетей являются коммутируемая телефонная сеть и коммутируемые вычислительные сети. Сети с коммутацией каналов имеют более богатую историю, они произошли от первых телефонных сетей. Сети с коммутацией пакетов сравнительно молоды, они появились в конце 60-х годов как результат экспериментов с первыми глобальными компьютерными сетями. Каждая из этих схем имеет свои достоинства и недостатки, но по долгосрочным прогнозам многих специалистов, будущее принадлежит технологии коммутации пакетов, как более гибкой и универсальной.

5.2.Коммутация каналов

При коммутации каналов (цепей) между связываемыми конечными пунктами на протяжении всего временного интервала соединения обеспечивается обмен в реальном масштабе времени, причем биты передаются с неизменной скоростью по каналу с постоянной полосой пропускания. Между абонентами устанавливается сквозной канал связи до начала передачи информации. Этот канал формируется из отдельных участков с одинаковой пропускной способностью. Прохождение отдельного сигнала вызова обеспечивается с помощью последовательного включения нескольких коммутационных устройств. Каждое устройство резервирует за собой физическое соединение между одним входящим и одним исходящим каналами. Если при установлении сквозного канала связи занята вызываемая сторона или хотя бы одно из коммутационных устройств в цепочке прохождения сигнала вызова, последний будет блокироваться, и абонент, инициировавший вызов, должен спустя некоторое время его повторить.

В качестве недостатков метода коммутации каналов можно указать следующие:

длительное время установления сквозного канала связи из-за возможного ожидания освобождения отдельных его участков;

необходимость повторной передачи сигнала вызова из-за занятости вызываемой стороны или какого-либо коммутационного устройства в цепочке прохождения этого сигнала;

отсутствие возможности выбора скоростей передачи информации;

возможность монополизации канала одним источником информации;

наращивание функций и возможностей сети ограничено;

не обеспечивается равномерность загрузки каналов связи (возможности по сглаживанию загрузки весьма ограниченны).

Преимущества метода коммутации каналов:

отработанность технологии (первое коммутационное устройство появилось еще в конце XIX в.);

возможность работы в диалоговом режиме и в реальном масштабе времени;

довольно широкая область применения (главным образом передача акустических сигналов).

5.3.Коммутация пакетов

Эта техника коммутации была специально разработана для эффективной передачи компьютерного трафика (трафик – объём данных, принимаемых или передаваемых сетевым устройством). Первые шаги на пути создания компьютерных сетей на основе техники коммутации каналов показали, что этот вид коммутации не позволяет достичь высокой общей пропускной способности сети. Типичные сетевые приложения генерируют трафик очень неравномерно, с высоким уровнем пульсации скорости передачи данных. Например, при обращении к удаленному файловому серверу пользователь сначала просматривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вообще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер — и это снова порождает интенсивную передачу данных по сети.

Коэффициент пульсации трафика отдельного пользователя сети, равный отношению средней интенсивности обмена данными к максимально возможной, может достигать 1:50 или даже 1:100. Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать. В то же время коммутационные возможности сети будут закреплены за данной парой абонентов и будут недоступны другим пользователям сети.

При коммутации пакетов все передаваемые пользователем сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл и т.д. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт.

При коммутации пакетов пользовательские данные (сообщения) перед началом передачи разбиваются на короткие пакеты фиксированной длины. Каждый пакет снабжается протокольной информацией (заголовком): коды начала и окончания пакета, адреса отправителя и получателя, номер пакета в сообщении, информация для контроля достоверности передаваемых данных в промежуточных узлах связи и в пункте назначения (контрольная сумма). Будучи независимыми единицами информации, пакеты, принадлежащие одному и тому же блоку информации, могут передаваться одновременно по различным маршрутам. Управление передачей и обработкой пакетов в узлах связи осуществляется коммутаторами или коммуникационными компьютерами. Одним из показателей этого метода является возможность согласования скоростей передачи данных между пунктами отправления и назначения, которое обеспечивается наличием в сети эффективных развязок, реализуемых созданием буферных запоминающих устройств (ЗУ) в узлах связи. Пакеты доставляются в пункт назначения с минимальной задержкой, где из них формируется первоначальное сообщение.

Технология коммутации пакетов, позволяет:

увеличить количество подключаемых узлов, так как здесь легче преодолеть трудности, связанные с подключением к коммутаторам дополнительных линий| связи;

осуществлять альтернативную маршрутизацию (в обход повреждённых или занятых узлов связи и каналов), что создает повышенные удобства для пользователей;

существенно сократить время на передачу пользовательских данных, повысить пропускную способность сети и повысить эффективность использования сетевых ресурсов.

Одной из концепций коммутации пакетов является мультиплексирование с помощью разделения времени использования одного и того же канала многими пользователями, что повышает эффективность функционирования сети. Логика коммутации пакетов позволяет мультиплексировать многие пользовательские сеансы на один порт компьютера. Пользователь воспринимает порт как выделенный, в то время как он используется как разделенный ресурс. Мультиплексирование порта и канала называют виртуальным каналом. Коммутация пакетов и мультиплексирование обеспечивают сглаживание асимметричных потоков в каналах связи.

При коммутации пакетов в сети находятся пакеты разных пользователей, которые доставляются коммуникационным оборудованием до адресатов. На рис.11 представлены схемы коммутации каналов и коммутации пакетов.

Рис.11.Схемы коммутации каналов и пакетов

В варианте "А" коммутационная сеть образует между телефонными абонентами непрерывный составной физический канал из последовательно соединенных коммутаторами промежуточных канальных участков (выделено жирным). В варианте "Б" пакеты могут быть направлены коммутаторами от одного компьютера до другого по разным каналам.

Достоинства и недостатки любой сетевой технологии относительны. В определенных ситуациях на первый план выходят достоинства, а недостатки становятся несущественными. Так, техника коммутации каналов хорошо работает в тех случаях, когда нужно передавать только трафик телефонных разговоров. Здесь с невозможностью "вырезать" паузы из разговора и более рационально использовать магистральные физические каналы между коммутаторами можно мириться. А вот при передаче очень неравномерного компьютерного трафика эта нерациональность уже выходит на первый план.

Первые научные работы о принципах работы сетей с коммутацией пакетов относятся к началу 60 - х годов. Исследования в области сетей с коммутацией пакетов стали основой, на которой базируются сегодняшняя сеть Internet и все другие вычислительные сети. Через некоторое время эти исследования вылились в исследовательскую программу Advanced Projects Research Agency (ARPA), в рамках которой была создана первая сеть с коммутацией пакетов, известная как ARPAnet. В 1972 г. был разработан первый протокол передачи данных между компьютерами, который назывался Network Control Protokol (NCP). После того, как сетевые концепции были отработаны на ARPAnet, стали появляться другие компьютерные сети. Среди них ALOHAnet, Telenet, Transpac и другие. Это были глобальные сети. История компьютерных сетей начинается именно с глобальных сетей. Но в 1972 г. Роберт Меткалф, работавший в фирме Xerox, разработал принципы Ethernet – сетей, которые впоследствии охватили весь мир, породив неизмеримое количество локальных сетей. Сети активно развивались, и в 1983 г. увидел свет стандарт протоколов стека TCP/IP. Он заменил применявшийся в ARPAnet протокол NCP, появилась система доменных имён DNS. С того времени развитие IP – сетей стало набирать мощь, этот процесс продолжается и сегодня.




Поделиться с друзьями:


Дата добавления: 2014-10-22; Просмотров: 419; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.097 сек.