Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Виды физических полей. Человека. Их источники




Нарушения радиоактивного фона в локальных условиях и тем более глобальные опасны для существования биосферы и могут привести к неисправимым последствиям. Причиной увеличения радиоактивного фона является активная деятельность человека. Создание крупной промышленности, научных установок, энергетических источников, военной техники и др. может приводить к локальным изменениям фона. Но наиболее опасными причинами нарушений естественного радиоактивного фона являются выбросы радиоактивных частиц,которые могут возникнуть при ядерных взрывах или при эксплуатации атомных электростанций (АЭС).

В основе ядерных взрывов и работы АЭС лежит явление деления ядер радиоактивных элементов, например, ядер урана. Это явление заключается в том, что при бомбардировке нейтронами ядер изотопа урана его ядра распадаются на две примерно равные части. Процесс деления ядра сопровождается испусканием двух или трёх нейтронов, например: . Эта реакция одна из типичных, хотя в природе существуют ещё многие другие реакции деления урана.

Важно, что при делении урана высвобождается огромное количество энергии, так как масса ядрабольше суммарной массы осколков деления.

Радиоактивные частицы выпадают на поверхность земли, образуя радиоактивный след. Радионуклиды, находящиеся в виде аэрозолей в воздухе, а также осевшие на земную поверхность, могут представлять для человека опасность. Оценку степени опасности можно получить по активности препарата А: А=-dN/dt, где N – количество распадающихся ядер. Активность данного препарата измеряется в кюри(Ku): 1Ku=3,7*10^10 распад/с

Активность уменьшается со временем по экспоненциальному закону: , где λ – постоянная распада, N0 – начальное количество ядер.

Для точечных источников излучений мощность экспозиционной дозы уменьшается с расстоянием по закону:, где r – расстояние от источника излучения, - гамма-постоянная, зависящая от природы радиоактивного источника.

Таким образом, при выпадении радионуклидов на почву степень опасности их влияния на организм зависит от природы радиоактивного изотопа, его активности и расстояния r от человека до источника, а экспозиционную дозу можно оценить из соотношения где ∆t – время облучения.

Физическое поле - особый вид материи. Физические поля связывают составные части вещества в единые системы и передают с конечной скоростью действие одних частиц на другие. Различают гравитационные, электромагнитные и другие поля.
Вихревое поле
Вихревое поле - поле, силовые линии которого являются замкнутым.
Гравитационное поле
Гравитационное поле - поле, которое создает вокруг себя тело, обладающее массой. Посредством гравитационных полей взаимодействуют физические объекты.
Материя
Материя - объективная реальность, данная нам в ощущениях.
Считается, что материя существует либо в виде вещества, либо в виде поля.
Формами существования материи являются пространство и время.
Силовые линии напряженности
Силовые линии напряженности - воображаемые линии, проведенные в гравитационном, магнитном или электрическом силовом поле так, что в каждой точке пространства направление касательной к этим силовым линиям совпадает с направлением напряженности поля.
Электромагнитное поле
Электромагнитное поле - особый вид материи:
- посредством которого осуществляются электромагнитные взаимодействия;
- представляющий собой единство электрического и магнитного полей.
В каждой точке электромагнитное поле характеризуется:
- напряженностью и потенциалом электрического поля; а также
- индукцией магнитного поля.
- индукцией магнитного поля.
Электрическое поле - особая форма существования материи, посредством которой осуществляется взаимодействие между покоящимися или движущимися электрическими зарядами.
Физическое поле - особый вид материи. Физические поля связывают составные части вещества в единые системы и передают с конечной скоростью действие одних частиц на другие. Различают гравитационные, электромагнитные и другие поля.
Магнитное поле - особая форма существования материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами. Магнитное поле:
- является формой электромагнитного поля;
- непрерывно в пространстве;
- порождается движущимися зарядами;
- обнаруживается по действию на движущиеся заряды;
- описывается уравнениями Максвелла.

Вокруг человека существуют электромагнитные и акустичес­кие поля (гравитационное поле и элементарные частицы оста­ются за пределами нашего рассмотрения).

Можно выделить основные 4 диапазона электромагнитного излучения и 3 диапазона акустического излучения, в которых ныне ведутся исследования (рис. 12.1).

Рис. 12.1. Схема электромагнитных (справа) и акустических (слева) собственных полей человека. Электромагнитные поля: Е - электри­ческое поле, В - магнитное, СВЧ - сверхвысокочастотные электро­магнитные волны дециметрового диапазона, ИК - электромагнитные волны инфракрасного диапазона, видимое - оптический диапазон излучений. Акустические поля: НЧ - низкочастотные колебания, КАЭ - кохлеарная акустическая эмиссия, УЗ - ультразвуковое излу­чение. Цифры - характерные частоты излучений (в герцах). Зашт­рихованы области тепловых излучений. Справа и слева указаны на­звания датчиков и приборов для регистрации соответствующих полей. СКВИД - сверхпроводящий квантовый интерферометр, ФЭУ — фотоэлектрический умножитель.

Электромагнитные поля. Диапазон собственного электромаг­нитного излучения ограничен со стороны коротких волн опти­ческим излучением, более коротковолновое излучение - вклю­чая рентгеновское и у-кванты - не зарегистрировано. Со стороны длинных волн диапазон можно ограничить радиовол­нами длиной около 60 см. В порядке возрастания частоты че­тыре диапазона электромагнитного поля, представленные на рис. 12.1, включают в себя:

· низкочастотное электрическое (Е) и магнитное (В) поле (частоты ниже 103 Гц);

· радиоволны сверхвысоких частот (СВЧ) (частоты 109- 1010 Гц и длина волны вне тела 3-60 см);

· инфракрасное (ИК) излучение (частота 10м Гц, длина вол­ны 3-10 мкм);

· оптическое излучение (частота 1015 Гц, длина волны по­рядка 0,5 мкм).

Такой выбор диапазонов обусловлен не техническими воз­можностями современной электроники, а особенностями био­логических объектов и оценками информативности различных диапазонов для медицины. Характерные параметры различных электромагнитных полей, создаваемых телом человека, приве­дены в табл. 12.1.

Источники электромагнитных полей разные в различных ди­апазонах частот. Низкочастотные поля создаются главным об­разом при протекании физиологических процессов, сопровож­дающихся электрической активностью органов: кишечником (-1 мин), сердцем (характерное время процессов порядка 1 с), мозгом (-0,1 с), нервными волокнами (-10 мс). Спектр частот, соответствующих этим процессам, ограничен сверху значени­ями, не превосходящими -1кГц.

В СВЧ и ИК-диапазонах источником физических полей яв­ляется тепловое электромагнитное излучение.

Чтобы оценить интенсивность электромагнитного излучения на разных длинах волн, тело человека, как излучатель, можно с до­статочной точностью моделировать абсолютно черным телом, ко­торое, как известно, поглощает все падающее на него излучение и поэтому обладает максимальной излучающей способностью.

Излучательная способность тела е^т - количество энергии, ис­пускаемой единицей поверхности тела в единицу времени в еди­ничном интервале длин волн по всем направлениям - зависит от длины волны А. и абсолютной температуры тела Т.

Эта функция имеет максимум на длине волны Х.т «= Ьс / (5кТ), что при температуре человеческого тела Т = 310 К составляет около 10 мкм. Поэтому ИК-излучение тела человека измеряют тепловизорами в диапазоне 3-10 мкм, где оно максимально.

Из рис. 12.2 следует, что в СВЧ-диапазоне, в котором длина волны в 10* раз больше, плотность энергии теплового излуче­ния на много порядков меньше.

Измерение теплового излучения позволяет определить тем­пературу тела человека из-за того, что спектральная зависи- мость теплового излучения меняется с ростом температуры. На рис. 12.2 приведены кривые для двух температур черного тела: 290 К (кривая 1) и 310 К (кривая 2). Столь большую разность температур мы выбрали, чтобы ярче выделить различия меж­ду кривыми. Видно, что рост температуры всего на 20 К вызы­вает увеличение интенсивности излучения в 1,5 раза (в ИК-ди- апазоне) - в других диапазонах он заметно меньше.

Акустические поля. Диапазон собственного акустического из­лучения ограничен со стороны длинных волн механическими колебаниями поверхности тела человека (0,01 Гц), со стороны коротких волн ультразвуковым излучением, в частности, от тела человека регистрировали сигналы с частотой порядка 10 МГц.

Рис. 12.2. Спектральная плотность излучательной способности теп­лового электромагнитного излучения абсолютно черного тела как функция длины волны X. Выбраны логарифмические шкалы по обе­им осям, поскольку величины е^т и X, изменяются на много порядков. Небольшие видимые отличия кривых 1 и 2 на самом деле соответству­ют большим изменениям е^т(в несколько раз)

В порядке возрастания частоты (цифры на рис. 12.1) три диа­пазона акустического поля включают в себя: 1) низкочастотные колебания (частоты ниже 10я Гц); 2) кохлеарную акустическую эмиссию (КАЭ) - излучение из уха человека (V ~103 Гц); 3) ульт­развуковое излучение (V - 1-10 МГц).

Источники акустических полей в различных диапазонах ча­стот имеют разную природу. Низкочастотное излучение созда­ется физиологическими процессами: дыхательными движени­ями, биением сердца, током крови в кровеносных сосудах и некоторыми другими процессами, сопровождающимися коле­баниями поверхности человеческого тела в диапазоне прибли­зительно 0,01 - 103 Гц. Это излучение в виде колебаний по­верхности можно зарегистрировать контактными, либо бес­контактными методами, однако его практически невозможно измерить дистанционно с помощью микрофонов. Это связано с тем, что идущие из глубины тела акустические волны прак­тически полностью отражаются обратно от границы раздела «воздух-тело человека* и не выходят наружу в воздух из тела человека. Коэффициент отражения звуковых волн близок к единице из-за того, что плотность тканей тела человека близ­ка к плотности воды, которая на три порядка выше плотности воздуха.

У всех наземных позвоночных существует, однако, специаль­ный орган, в котором осуществляется хорошее акустическое согласование между воздухом и жидкой средой, - это ухо. Сред­нее и внутреннее ухо обеспечивают передачу почти без потерь звуковых волн из воздуха к рецепторным клеткам внутренне­го уха. Соответственно, в принципе, возможен и обратный про­цесс - передача из уха в окружающую среду - и он обнаружен экспериментально с помощью микрофона, вставленного в уш­ной канал.

Источником акустического изучения мегагерцевого диапа­зона является тепловое акустическое излучение - полный ана­лог соответствующего электромагнитного излучения. Оно воз­никает вследствие хаотического теплового движения атомов и молекул человеческого тела. Интенсивность этих акустических волн, как и электромагнитных, определяется абсолютной тем­пературой тела.




Поделиться с друзьями:


Дата добавления: 2014-10-23; Просмотров: 3366; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.