КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пневматическое измерение уровня жидкости в резервуаре
Принцип сообщающихся сосудов и его использование. Пусть два открытых сообщающихся сосуда заполнены жидкостью плотностью ρ (рисунок 5а).
Выберем произвольную плоскость сравнения 0-0 и некоторую точку А внутри жидкости, лежащую в этой плоскости. Если считать точку А принадлежащей левому сосуду, то, согласно закону Паскаля давление в этой точке:
,
Если же считать точку А принадлежащей правому сосуду, то давление в ней:
,
При равновесии для каждой точки давление одинаково в любом направлении (в противном случае происходило бы перемещение жидкости). Следовательно:
, Или,
Аналогичный вывод может быть сделан для двух закрытых сообщающихся сосудов, в которых давления над свободной поверхностью жидкости одинаковы. Таким образом, в открытых или закрытых находящихся под одинаковым давлением сообщающихся сосудах, заполненных однородной жидкостью, уровни ее располагаются на одной высоте независимо от формы и поперечного сечения сосудов. Если сообщающиеся сосуды заполнены двумя несмешивающимися жидкостями, имеющими плотность ρ’ (левый сосуд) и ρ’’ (правый сосуд), то при проведении плоскости сравнения 0-0 через границу раздела жидкостей (рисунок 5 б) аналогично предыдущему получим:
или,
Отсюда следует, что в сообщающихся сосудах высоты уровней разнородных жидкостей над поверхностью их раздела обратно пропорциональны плотностям этих жидкостей.
Если сосуды заполнены одной жидкостью плотностью ρ, но давление над уровнем жидкости в них неодинаковы и равны p’ (левый сосуд) и p” (правый сосуд) (рисунок 6):
Рисунок 6 - Сообщающиеся сосуды, когда сосуды заполнены однородной жидкостью, но давление в сосудах разное ()
то можно записать:
,
Откуда разность уровней жидкости в сосудах:
,
Последнее уравнение применяется при измерении давлений или разностей давлений между различными точками с помощью дифференциальных U – образных манометров. Условия равновесия жидкостей в сообщающихся сосудах используют также для определения высоты гидравлического затвора в различных аппаратах [2]. Для контроля за объемом жидкости в каком-либо резервуаре 1 например подземном (рисунок 6), в него помещают трубу 2, нижний конец которой доходит почти до днища резервуара.
Рисунок 7 – Пневматический измеритель уровня жидкости
Давление над жидкостью в резервуаре равно р0. По трубе 2 подают сжатый воздух (газ) постепенно повышая его давление, замеряемое манометром 3.
Когда воздух преодолеет сопротивление столба жидкости в резервуаре и начнет барботировать сквозь жидкость, давление р, фиксируемое манометром, перестанет возрастать и будет равно:
,
Откуда уровень жидкости в резервуаре:
,
По величине h и известной площади поперечного сечения резервуара определяют объем находящейся в нем жидкости [2].
Дата добавления: 2014-10-23; Просмотров: 984; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |