КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Измерение температуры
В окружающем нас мире существует великое множество неэлектрических величин. И для оценки их значений в настоящее время широко используются электрические методы и средства измерений. Для того, чтобы использовать все достоинства электрических форм преобразования информации, необходимо предварительно преобразовать неэлектрическую физическую величину в электрическую (электрическое напряжение, ток, электрическое сопротивление или емкость, частоту следования импульсов, индуктивность, заряд или др.). Рассмотрим применение этих подходов на примере измерения некоторых неэлектрических величин, наиболее часто встречающихся в практических задачах. Температура – одна из важнейших физических величин, оцениваемых в задачах различных научных, технических, промышленных исследований. В настоящее время используются как электрические, так и неэлектрические методы и средства измерения температуры. Неэлектрические методы представлены, например, обычными жидкостными термометрами. Электрические методы (основа современных измерений) реализованы, например, в термометрах и регистраторах на основе термоэлектрических преобразователей. Различают статические (в которых предполагается неизменность значения температуры в течение времени наблюдения) и динамические измерения (когда процесс достаточно быстро меняется и принципиально важно знать характер поведения величины и (или) важно оперативно отслеживать все изменения, как, например, в системе автоматизированного управления). Существует также деление средств измерения температуры на показывающие и регистрирующие. Первые реализуют статические модели и имеют только шкалу или цифровой индикатор для отсчета текущего значения. Вторые предназначены для динамических моделей и позволяют записывать изменения температуры (как функции времени) в течение некоторого, порой достаточно длительного, интервала времени. По способам преобразования информации методы и средства измерения (регистрации) делят на аналоговые и цифровые. Цифровые термометры имеют ряд известных преимуществ перед аналоговыми – более высокие метрологические и эксплуатационные характеристики, быстродействие, надежность. Кроме того, цифровая форма представления информации обеспечивает простоту дальнейшей автоматизированной обработки, хранения, передачи и представления данных. По принципу взаимодействия прибора с объектом методы и средства измерения температуры делятся на контактные и бесконтактные. Первые проще в применении и могут обеспечивать более высокую точность. Вторые удобнее в работе (а в некоторых задачах просто незаменимы), позволяют получить результат быстрее, хотя, может быть, и с большей погрешностью. Многоканальные измерители (регистраторы) температуры предназначены для регистрации нескольких процессов и/или синхронных измерений температуры в нескольких точках. В настоящее время в практике температурных измерений используются, как правило, цифровые средства измерения температуры, основанные на электрических методах преобразования. При этом применяются как статические, так и динамические модели объектов и процессов. Одинаково широко распространены и контактные, и бесконтактные методы и средства. Одноканальные измерители применяются чаще многоканальных, хотя широко используются комбинированные цифровые приборы, которые могут измерять две или несколько различных физических величин, например, температуру и относительную влажность воздуха или температуру и скорость потока воздуха (термоанемометр). Среди регистраторов температуры многоканальность встречается чаше, чем в показывающих приборах. Основными требованиями, предъявляемыми к средствам измерения и регистрации температуры (как и к другим средствам технических измерений), являются: необходимая достоверность результатов измерения, надежность и возможность работы в жестких условиях эксплуатации, малые габаритные размеры и масса, простота и удобство работы, отсутствие влияния (точнее – пренебрежимо малое влияние) на ход исследуемых процессов, наглядность представляемой информации, доступная цена.
Дата добавления: 2014-10-15; Просмотров: 645; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |