Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Системы счисления. Как только люди стали общаться между собой, они стали считать




Как только люди стали общаться между собой, они стали считать. Самыми первыми инструментами счета были пальцы, палочки и камешки. Слово «камешки» по латински читается calculi, а их перебрасывание при счете - calculare, означает считать. Когда расчеты (например с покупателями) стали фиксировать на табличках или папирусе появились системы счисления

Системой счисления называют правила для записи чисел цифровыми знаками.

Системы счисления различаются выбором базисных чисел (цифр) и правилами образования из них всех остальных чисел

Все системы счисления делятся на две большие группы: позиционные и непозиционные. В позиционных системах счисления значение цифры зависит от ее положения в чис­ле, а в непозиционных — не зависит.

Самой рас­пространенной из непозиционных систем счисления являет­ся римская. В качестве цифр в римской системе использу­ются: I (1), V (5), X (10), L (50), С (100), D (500), М (1000).

Значение цифры не зависит от ее положения в числе. Каждый числовой знак (цифра) имеет одно и тоже значение. На­пример, в числе XXX (30) цифра X встречается трижды и, в каждом случае, обозначает одну и ту же величину — число 10, три раза по 10 в сумме дают 30.

Величина числа в римской системе счисления определя­ется как сумма или разность цифр в числе. Древним римлянам, чтобы указать большое число, приходилось либо рисовать громоздкие строки повторяющихся символов, либо увеличивать алфавит этих символов. Но все эти «маленькие хитрости» оказались бессильны перед проблемой записи «гигантских» чисел.

Выход был найден, когда стали применять позиционные системы счисления.

В позиционной системе счисления число представляется в виде «определенной последовательности» нескольких цифр.

Количествен­ное значение каждой цифры изменяется в зависимости от ее положения (позиции) в числе. Позиция цифры в числе называется разрядом. Разряд числа возрастает справа налево, от младших разрядов к старшим. Поэтому одна и та же цифра может иметь различное числовое значение.

Например, число 555 записано в привычной для нас свернутой фор­ме. Мы настолько привыкли к такой форме записи, что уже не замечаем, как в уме умножаем цифры числа на различ­ные степени числа 10.

В развернутой форме записи числа такое умножение про­изводится в явной форме.

55510 = 5 .102 + 5 . 101 + 5 . 10°.

Как видно из примера, число в позиционных системах счисления записывается в виде суммы числового ряда степе­ней основания (в данном случае 10), в качестве коэффициен­тов которых выступают цифры данного числа.

Для записи десятичных дробей используются разряды с отрицательными значениями степеней основания. Напри­мер, число 555,55 в развернутой форме будет записываться следующим образом:

555,5510 = 5 .102+ 5 . 101 + 5 . 10°+ 5 . 10-1 + 5 . 10-2,

Позиционные системы счисления характеризуется своим основанием под которым подразумевается число знаков (символов),используемыхдлиизображения цифр. При этом в качестве основания системыможно взятьлюбое число.

В вычислительной технике наиболее распространенными в настоящее время являются десятичная, двоич­ная, восьмеричная и шестнадцатеричная системы счисления.

 

Таблица Позиционные системы счисления

Система счисления   Основание   Алфавит цифр  
Десятичная     0. 1,2,3,4.5,6,7,8,9  
Двоичная     0, 1  
Восьмеричная     0. 1,2,3,4,5,6,7  
Шестнадцатеричная     0, 1,2,3,4,5,6,7,8,9,A(10) B(11),С(12),D(13),Е(14), F(15)  

 




Поделиться с друзьями:


Дата добавления: 2014-10-31; Просмотров: 338; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.