Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общая формулировка задачи




 

Некоторые задачи линейного программирования требуют целочисленного решения. К ним относятся задачи по произ­водству и распределению неделимой продукции (выпуск стан­ков, телевизоров, автомобилей и т.д.). В общем виде математи­ческая модель задачи целочисленного программирования име­ет вид

 

 

при ограничениях:

 

 

Оптимальное решение задачи, найденное симплексным ме­тодом, часто не является целочисленным. Его можно округлить до ближайших целых чисел. Однако такое округление может дать решение, не лучшее среди целочисленных решений, или привести к решению, не удовлетворяющему системе ограниче­ний. Поэтому для нахождения целочисленного решения нужен особый алгоритм. Такой алгоритм предложен Гомори и состо­ит в следующем.

Симплексным методом находят оптимальное решение за­дачи. Если решение целочисленное, то задача решена. Если же оно содержит хотя бы одну дробную координату, то на­кладывают дополнительное ограничение по целочисленности и вычисления продолжают до получения нового решения. Ес­ли и оно является нецелочисленным, то вновь накладывают дополнительное ограничение по целочисленности. Вычисления продолжают до тех пор, пока не будет получено целочисленное решение или показано, что задача не имеет целочисленного ре­шения.

Пусть получено оптимальное решение опт = (f 1, f 2,..., fr, 0,..., 0), которое не является целочисленным, тогда по­следний шаг симплексной таблицы имеет следующий вид:

 

 

где r — ранг системы ограничений; hi,r+ 1 — коэффициент сим­плексной таблицы i -й строки, (r + 1)-го столбца; fi — свобод­ный член i -й строки.

Пусть fi и хотя бы одно hij (j = , r = ) — дроб­ные числа.

Обозначим через [ fi ] и [ hij ] целые части чисел fi и hij.

Определение 1. Целой частью числа fi называют наибольшее целое число, не превосходящее числа fi.

Дробную часть чисел fi и hij обозначим { fi } и { hij }, она определяется следующим образом:

 

 




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 484; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.