Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Поглощение звука. Звукопоглощающие материалы и конструкции




Оптимальное время реверберации

Время реверберации нормируется. Нормативное время реверберации называется оптимальным – Топт.. На рис. 12 представлена зависимость оптимального времени реверберации от объема помещения и назначения зала для звуков средней частоты 500 Гц.

В архитектурной практике время реверберации определяется в диапазоне частот 125 - 4000 Гц, поскольку эти частоты характерны для диапазона звуков, наиболее часто встречающихся в речи, музыке. Согласно СНиП 23-03-2003

расчет следует проводить в шести октавных полосах частот со среднегеометрическими частотами 125, 250, 500, 1000, 2000 и 4000 Гц.

В данном пособии приведены данные для расчета времени реверберации на частотах 125, 500 и 2000 Гц. Более детальный расчет проводится аналогично. В ряде помещений, в которых качество акустики ограничивается требованиями слышимости и разборчивости речи (например, в аудиториях), можно определить время реверберации только для частоты 500 Гц.

Для низких частот принимается более длительное оптимальное время реверберации, а для высоких - более короткое время реверберации, чем для средних частот.

 

Топт125 = 1,2 Топт500; (10)

Топт2000 = 0,9 Топт500.

 

Энергия звуковых волн, падающих на поверхность, в общем случае частично отражается, частично поглощается и частично проходит через ограждающую конструкцию. Чтобы учесть ту часть энергии, которая не отражается, а поглощается (и отчасти, возможно, проходит через ограждение), вводится коэффициент звукопоглощения данной поверхности α.

Коэффициент звукопоглощения может меняться в пределах: 0 < a ≤ 1. Например, если a = 0,6, это означает, что 60 % падающей на поверхность звуковой энергии поглощается.

Обычные строительные материалы – бетон, штукатурка и т.п. - имеют ничтожно малые коэффициенты звукопоглощения (обычно в диапазоне 0,01 – 0,05), то есть практически полностью отражают падающие звуковые волны. При необходимости существенно снизить энергию отраженных звуков применяются специальные материалы или конструкции, обладающие значительно более высокими коэффициентами звукопоглощения и получившие название звукопоглощающих.

Звукопоглотители могут служить для обеспечения оптимальных акустических условий в залах разного назначения (оптимальное время реверберации, отсутствие эха и фокусировки звука в зале), а также для снижения уровней шума в данном помещении.

С акустической точки зрения звукопоглотители можно разделить на следующие группы: пористые, мембранные (резонансные) поглотители звука и пористые звукопоглотители с перфорированными экранами (комбинированные).

Пористые звукопоглотители эффективны в области высоких и средних частот. Такие поглотители звука обычно изготавливают в виде плит или панелей, которые крепят непосредственно к поверхности или на относе (рис.13). Используемые материалы – минеральная вата, стеклянное, капроновое или древесное волокно, пенопласт и т.д. Лицевая поверхность данных материалов может быть обработана специальными красками (пористыми), пропускающими воздух, покрыта акустически прозрачными тканями или неткаными материалами, а в случае отсутствия окрасочного или тканевого

 

слоя может быть защищена, например, декоративными решетками– экранами.

Лист пористого материала, помещенный на некотором расстоянии от поверхности стены, будет оказывать такое же действие, как и более толстый слой звукопоглотителя. Кроме того, в этом случае увеличится поглощение звука на низких частотах.

К пористым материалам относятся также драпировки и ковры, применяемые для увеличения общего звукопоглощения залов на средних и высоких частотах.

Для акустической обработки поверхностей различной конфигурации: криволинейных стен и потолков, круглых колонн, дугообразных сводов и т.д. – можно использовать акустические обои или напыляемые акустические покрытия.

Мембранные поглотители звука представляют собой гибкие листы, растянутые на опорах, либо жесткие панели, установленные на некотором расстоянии перед твердой поверхностью (рис.14). Такие поглотители наиболее эффективны на резонансной частоте, которая зависит от их поверхностной плотности и ширины ограниченной ими полости.

Примеры мембранных поглотителей звука: гипсокартонные листы, деревянные панели, жесткие древесноволокнистые плиты – с воздушной прослойкой. Большинство таких звукопоглотителей эффективно в низкочастотном диапазоне.

Конструкции с перфорированным покрытием материала позволяют получать достаточно большое звукопоглощение в любой области частот (рис.15). Такие поглотители представляют собой слой пористого материала, укрепленный на поверхности и закрытый перфорированным экраном. Частотная характеристика регулируется подбором материала, его толщиной, толщиной экрана, размером и формой отверстий, процентом перфорации. Преимущество перфорированных конструкций заключается в простоте их монтажа, широком спектре звукопоглощения, а также – в хороших возможностях архитектурно-декоративного решения интерьеров помещения.

Коэффициенты звукопоглощения некоторых материалов представлены в таблице А Приложения.

 

Вопросы для самопроверки

1. Какие параметры помещения влияют на время реверберации?

2. Возможно ли явление реверберации на открытой площадке?

3. При расчете времени реверберации на каких частотах следует учитывать поглощение звука в воздухе?

4. Что общего и какие отличия в явлениях реверберации и эха?

5. Какие факторы определяют оптимальное время реверберации?

6. Зависит ли время реверберации в зале от мощности источника звука?

7. Какие поверхности в зале следует облицевать звукопоглощающими материалами, если для оптимизации времени реверберации требуется дополнительное звукопоглощение?

8. Чему равна ЭПЗ поверхности площадью S, поглощающая 50% падающей звуковой энергии?

9. Стены в помещении облицованы деревянными панелями на относе 10 см от поверхности. Является ли такая отделка звукопоглощающей? Если – да, то для каких частот?

10. Что учитывает коэффициент добавочного звукопоглощения?

 

 

II. МЕТОДИКА ВЫПОЛНЕНИЯ РАБОТЫ

(расчетная часть)

Цель данной части – обеспечить нормативное время реверберации в зале. Она решается правильным выбором отделочных материалов.

Исходными данными для расчета являются: назначение и объем зала, количество зрительских мест, площади поверхностей зала.

По окончании расчета следует сделать вывод об обеспечении оптимального времени реверберации в пределах допустимых отклонений.




Поделиться с друзьями:


Дата добавления: 2014-10-31; Просмотров: 1935; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.