КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Differential equations
Check your comprehension Limits of spaces Check your comprehension ~ What does the geometrization conjecture state? The second current of ideas did not appear to have a connection with the Poincaré conjecture until much later. While technical in nature, the work, in which the names of Cheeger and Perelman figure prominently, has to do with how one can take limits of geometric shapes, just as we learned to take limits in beginning calculus class. Think of Zeno and his paradox: you walk half the distance from where you are standing to the wall of your living room. Then you walk half the remaining distance. And so on. With each step you get closer to the wall. The wall is your "limiting position," but you never reach it in a finite number of steps. Now imagine a shape changing with time. With each "step" it changes shape, but can nonetheless be a "nice" shape at each step-- smooth, as the mathematicians say. For the limiting shape the situation is different. It may be nice and smooth, or it may have special points that are different from all the others, that is, singular points, or "singularities." Imagine a Y-shaped piece of tubing that is collapsing: as time increases, the diameter of the tube gets smaller and smaller. Imagine further that one second after the tube begins its collapse, the diameter has gone to zero. Now the shape is different: it is a Y shape of infinitely thin wire. The point where the arms of the Y meet is different from all the others. It is the singular point of this shape. The kinds of shapes that can occur as limits are called Aleksandrov spaces, named after the Russian mathematician A. D. Aleksandrov who initiated and developed their theory. ~ What does Zeno’s paradox state? ~ What is the limiting shape for a Y-shaped piece of tubing? ~ What are limiting shapes called? The third development concerns differential equations. These equations involve rates of change in the unknown quantities of the equation, e.g., the rate of change of the position of an apple as it falls from a tree towards the earth's center. Differential equations are expressed in the language of calculus, which Isaac Newton invented in the 1680s in order to explain how material bodies (apples, the moon, and so on) move under the influence of an external force. Nowadays physicists use differential equations to study a great range of phenomena: the motion of galaxies and the stars within them, the flow of air and water, the propagation of sound and light, the conduction of heat, and even the creation, interaction, and annihilation of elementary particles such as electrons, protons, and quarks. In our story, conduction of heat and change of temperature play a special role. This kind of physics was first treated mathematically by Joseph Fourier in his 1822 book, Théorie Analytique de la Chaleur. The differential equation that governs change of temperature is called the heat equation. It has the remarkable property that as time increases, irregularities in the distribution of temperature decrease. Differential equations apply to geometric and topological problems as well as to physical ones. But one studies not the rate at which temperature changes, but rather the rate of change in some geometric quantity as it relates to other quantities such as curvature. A piece of paper lying on the table has curvature zero. A sphere has positive curvature. The curvature is a large number for a small sphere, but is a small number for a large sphere such as the surface of the earth. Indeed, the curvature of the earth is so small that its surface has sometimes mistakenly been thought to be flat. For an example of negative curvature, think of a point on the bell of a trumpet. In some directions the metal bends away from your eye; in others it bends towards it.
Дата добавления: 2014-10-31; Просмотров: 544; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |