Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Блочные двоичные коды




Второй вариант перекодирования исходного сигнала в линейный подразу­мевает получение линейного кода с тактовой частотой, которая больше частоты следования отдельных импульсов исходного двоичного сигнала. Здесь также возможны два способа преобразования.

Первый — преобразование ДС (рис. 15.14, а) в биимпульсный сигнал, при котором нуль передается, как и прежде, а сигнал единицы передается биимпульсным сигналом, например вида +1—1 (рис. 15.14, б). Используется также вариант, когда и нулевой символ заменяется биимпульсной комбинацией, но уже другого вида -1+1 (рис. 15.14, в). Такой метод позволяет полностью устра­нить постоянную составляющую в ЛС и межсимвольные искажения второго рода, но передача линейного сигнала требует увеличения полосы пропускания в области верхних частот по крайней мере в 2 раза.

Кроме этого метода, возможен еще один способ преобразования, при кото­ром каждая группа из символов исходного двоичного сигнала заменяется группой из я символов двоичного линейного сигнала, что выражается форму­лой , Поскольку , то для каждой из возможных комбинаций нулей и единиц в пакете из символов ДС

можно подобрать свою комбинацию, зара­нее определенную из возможных (в пакете издвоичных символов ЛС), что позволяет избавиться от длинных серий нулей (или единиц) и сохранить воз­можности контроля за качеством работы регенераторов без прерывания связи и использования специальных испытательных сигналов.

Наиболее простыми и весьма эффективными являются линейные коды класса, в которых с каждым отдельным символом исходной последова­тельности сопоставляются два двоичных символа линейного кода.

Например, единица исходной последовательности (рис. 15.15, а) может быть передана комбинацией 10, а нуль — 01 (рис. 15.15, б).

 

Такое кодирование всегда обеспе­чивает одно и то же значение постоянной составляющей ЛС при любом содер­жании 1 и 0 в исходном ДС, но при этом приводит к удвоению тактовой часто­ты линейного сигнала:. Одной из модернизаций приведенного кода является код AMI, в котором каждый исходный символ ДС кодируется одной из двух возможных двухразрядных комбинаций. Например, вместо 0 передает­ся 10 или 01, а вместо 1 — соответственно 11 или 00. При этом каждый следую­щий одноименный символ принимает обязательно другое возможное значе­ние. Например, комбинация ДС вида 110010 будет кодироваться в виде 11.00.01.10.11.01. В таком коде при нормальной работе никогда не может быть более двух импульсов или более двух пауз подряд. Нарушение этой закономер­ности свидетельствует о появлении ошибки.

В условиях ограниченной полосы линии связи при необходимости можно построить более экономные блочные коды (например, код 5В6В), когда блок из т символов исходной последовательности (см. рис 15.15, я) заменяется блоком из n = т + 1 символов линейного кода (рис. 15.15, в). При этом увеличение так­товой частоты может быть незначительным: если

При построении блочных кодов очень важным является выбор алфавита кода, т.е. таблицы соответствия между каждой исходной m-битовой и разре­шенной m-битовой комбинациями. В частности, в коде 5В6В алфавит 6-бито­вых слов выбирают следующим образом. В первую очередь используют те блоки, у которых количество символов «1» равно половине общего числа бит в блоке, что обеспечивает неизменность постоянной составляющей. Таких «хороших» комбинаций будет 20 (число сочетаний из 6 по 3), и каждая из них используется для кодирования одной из 20 исходных 5-битовых комбинаций. Для остальных 5-битовых комбинаций (их число равно 12 = 25 — 20) в алфавит отбирают еще 24 шестибитовых слова (по два на каждую 5-битовую комбинацию, причем в од­ном слове количество символов «1» равно 4, а в другом — 2). Слова, входящие в такую пару, передаются поочередно при появлении одной и той же исходной 5-битовой комбинации. Таким образом, и для этих 12 комбинаций обеспечива­ется сохранение постоянной составляющей в линейном сигнале. Некоторые из возможных 6-битовых комбинаций (их число равно 20=26-20-24) не входят в алфавит и являются запрещенными. Обнаружение их в линейном сигнале сви­детельствует о появлении ошибки или о нарушении синхронизации при деко­дировании линейного кода.

Отметим, что блочное кодирование типа тВпВ оставляет линейный сигнал униполярным, однако в нем, как и при скремблировании, постоянная состав­ляющая меняется в очень малых пределах. Это позволяет при необходимости легко устранить ее из сигнала, а затем восстановить (рис. 15.15, г). Для декоди­рования блочного кода на приемной стороне, когда из n -разрядной кодовой группы восстанавливается исходная m -разрядная, необходимо сначала опреде­лить границы этой группы. В большинстве случаев эту задачу удается решить 6eз использования специального сигнала синхронизации за счет обнаружения в линейном сигнале запрещенных кодовых комбинаций. Эти комбинации от­сутствуют в алфавите кода и могут образовываться только на границах двух со­седних групп. Например, в коде 1В2В, показанном на рис. 15.14, в, запрещенными являются комбинации вида +1+1 или -1-1 (они отмечены звездочкой). По ним и определяются границы 2-разрядных кодовых комбинаций линейного сигнала.

В качестве примера рассмотрим построение преобразователей кода передачи и приема для блочного кода 5В6В. На стороне передачи исходный двоичный сигнал ДС (рис. 15.16, а) поступает в блок 2, который преобразует 5-разрядные кодовые комбинации из последовательного кода в параллельный.

Делитель частоты /, который делит тактовую частоту RCfr в 5 раз, формирует импульсы блочной частотыс длительностью.

Они совпадают по времени с последним, пятым импульсом 5-разрядной кодовой комбинации. Именно в это время и происходит запись кодовой комбинации в параллельном коде в запоминающее устройство (ЗУ) 3. Затем 5-разрядная комбинация в соот­ветствии с выбранным алфавитом в цифровом преобразователе 4 преобразуется в 6-разрядную комбинацию и записывается в блок 6. В этом блоке с помощью тактовых импульсов линейной частоты , которые формируются на выходе умножителя частоты 5, осуществляется преобразование из парал­лельного кода в последовательный.

На стороне приема (рис. 15.16, б) двоичные символы линейного сигнала, следующие с линейной частотой поступают в блок 1, который осуществляет преобразование 6-битовых комбинаций из последовательно- го кода в парал­лельный. Далее эти комбинации переписываются в ЗУ 2 при поступлении раз­решающих импульсов блочной частоты которые формируются на выходе делителя частоты 10 с коэффициентом деления 6. Выходы ЗУ 2 под­ключены параллельно к входам цифрового преобразователя 3 и дешифратора ошибок (ДШО) 5. Блок 3 в соответствии с алфавитом кода 5В6В осуществляет обратное преобразование 6-битовой кодовой комбинации в 5-битовую, кото­рая затем в блоке 4 преобразуется из параллельного кода в последовательный.

Преобразование выполняется с помощью импульсов тактовой частоты, формируемых на выходе умножителя частоты 11 .

ДШО 5 обнаруживает любую из 20 возможных запрещенных кодовых ком­бинаций, которые возникают вследствие ошибок в линейном тракте или отсут­ствия блочной синхронизации, т.е. неправильного разделения линейного сиг­нала на 6-символьные блоки. При обнаружении запрещенной комбинации ДШО 5 формирует одиночные импульсы сбоя, которые поступают параллельно в накопитель ошибок 6 и на вход формирователя интервалов анализа (ФИА) 7.

Если за интервал анализа в накопитель б поступит импульсов сбоя, где -емкость накопителя, то последний из них пройдет через схему совпадения И8 и поступит на схему запрета 9. В результате будет запрещен один импульс линейной частоты, что вызовет задержку на один такт импульсов блочной частоты на выходе делителя 10. Одновременно при этом производится сброс в первоначальное состояние накопителя ошибок и ФИА. Очередной сдвиг на один такт импульсов блочной частоты будет продолжаться до тех пор, пока не найдется их правильное положение, при котором они совпадают по времени с приходом последнего, шестого импульса 6-битовой комбинации линейного сигнала. В этом случае поток ошибок резко сокращается, поэтому хотя ФИА и «запускается» от случайной ошибки, но за время анализа Та вряд ли пройдет d ошибок. Соответственно не изменится и режим блочной синхро­низации.

Коэффициент накопления и интервал анализа выбираются из компро­миссных соображений и с учетом ступени иерархии ЦСП. Максимальное вре­мя поиска блочной синхронизации, которое для линейного кода 5В6В равно , должно быть в 2—3 раза меньше, чем время поиска цикловой син­хронизации группового двоичного сигнала (см. параграф 13.6).




Поделиться с друзьями:


Дата добавления: 2014-10-31; Просмотров: 1196; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.