Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Точеные дефекты




Одним из распространенных несовершенств кристаллического строения является наличие точечных дефектов: вакансий, атомов в междоузлии и атомов примесей.

Вакансия – отсутствие атомов в узлах кристаллической решетки, «дырки», которые образовались в результате различных причин.

Атом в междоузлии – это атом, вышедший из узла решетки и занявший место в междоузлие.

Примесные атомы всегда присутствуют в металле, так как практически невозможно выплавить химически чистый металл. Они могут иметь размеры больше или меньше размеров основных атомов и располагаются в узлах решетки или междоузлиях.

Точечные дефекты вызывают незначительные искажения решетки, что может привести к изменению свойств тела (электропроводность, магнитные свойства), их наличие способствует процессам диффузии и протеканию фазовых превращений в твердом состоянии. При перемещении по материалу дефекты могут взаимодействовать.

 

Линейные дефекты:

Основными линейными дефектами являются дислокации.

Дислокация – это дефекты кристаллического строения, представляющие собой линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей.

Краевая дислокация - это область несовершенства кристалла вокруг края “лишней“ полуплоскости или экстраплоскости (рис. 1)

а) б)

Рис. 1. Краевая дислокация (а) и механизм ее образования (б)

Большинство дислокаций образуются путем сдвигового механизма.

Другой тип дислокаций был описан Бюргерсом, и получил название винтовая дислокация

Дислокации не могут обрываться внутри кристалла. Они должны либо быть замкнутыми, образуя петлю, либо взаимосвязанную сетку, либо выходить на поверхность кристалла.

Дислокационная структура материала характеризуется плотностью дислокаций. Плотность дислокаций в кристалле определяется как среднее число линий дислокаций, пересекающих внутри тела площадку площадью 1 м2, или как суммарная длина линий дислокаций в объеме 1 м3

(см-2; м-2)

Плотность дислокаций изменяется в широких пределах и зависит от состояния материала. После тщательного отжига плотность дислокаций составляет 105…107 м-2, в кристаллах с сильно деформированной кристаллической решеткой плотность дислокаций достигает 1015…10 16 м –2.

Плотность дислокации в значительной мере определяет пластичность и прочность материала (рис.2)

Рис. 2. Влияние плотности дислокаций на прочность

 

Минимальная прочность определяется критической плотностью дислокаций

Если плотность меньше значения а, то сопротивление деформированию резко возрастает, а прочность приближается к теоретической. Повышение прочности достигается созданием металла с бездефектной структурой, а также повышением плотности дислокаций, затрудняющим их движение. В настоящее время созданы кристаллы без дефектов – нитевидные кристаллы длиной до 2 мм, толщиной 0,5…20 мкм - “усы“ с прочностью, близкой к теоретической: для железа = 13000 МПа, для меди =30000 МПа. При упрочнении металлов увеличением плотности дислокаций, она не должна превышать значений 1015…10 16 м –2. В противном случае образуются трещины.

Поверхностные дефекты – границы зерен, фрагментов и блоков (рис. 7).

Размеры зерен составляют до 1000 мкм. Углы разориентации составляют до нескольких десятков градусов ().

Граница между зернами представляет собой тонкую в 5 – 10 атомных диаметров поверхностную зону с максимальным нарушением порядка в расположении атомов.

Строение переходного слоя способствует скоплению в нем дислокаций. На границах зерен повышена концентрация примесей, которые понижают поверхностную энергию. Однако и внутри зерна никогда не наблюдается идеального строения кристаллической решетки. Имеются участки, разориентированные один относительно другого на несколько градусов (). Эти участки называются фрагментами. Процесс деления зерен на фрагменты называется фрагментацией или полигонизацией.

В свою очередь каждый фрагмент состоит из блоков, размерами менее 10 мкм, разориентированных на угол менее одного градуса (). Такую структуру называют блочной или мозаичной.

Диффузия движение частиц среды, приводящее к необратимому переносу вещества или к установлению равновесного распределения концентраций частиц данного сорта в среде. В качестве диффундирующих частиц рассматривают молекулы, атомы, электроны проводимости, дырки, нейтроны и другие частицы. Диффузия в твердых веществах приводит к переносу атомов на расстояния, превышающие межатомные расстояния для данного вещества. Частным случаем диффузии в чистом веществе или растворе постоянного состава, при котором диффундируют собственные частицы вещества, а его химический состав не меняется, является самодиффузия. При самодиффузии диффузионные перемещения частиц твердого вещества могут приводить к изменению его формы и другим явлениям. Так, длительное воздействие сил поверхностного натяжения, тяжести, упругих, электрических и др. может привести к сращиванию двух пришлифованных поверхностей образцов одного и того же вещества, спеканию порошков, растягиванию образцов под действием подвешенного к ним груза (диффузионная ползучесть материалов) и т.д.

В отсутствие макроскопического движения среды диффузия молекул (атомов) определяется их тепловым движением. При наличии в среде стационарных перепадов температуры, электрических полей и т.п. диффузия приводит к установлению равновесного распределения концентраций, характеризуемого соответствующими градиентами (термодиффузия, электродиффузия и т.п.). В однородной системе (газ, жидкость) при молекулярной диффузии в отсутствие внешних воздействий диффузионный поток (поток массы) пропорционален градиенту его концентрации. Коэффициент пропорциональности называется коэффициентом диффузии. Последний зависит от строения и структуры взаимодействующих веществ и особенно сильно — от температуры.

В твердых кристаллических веществах различают следующие виды диффузии: по механизму протекания, по геометрическому месту переноса

атомов, по месту поглощения атомов и по природе процесса.

Механизм протекания диффузии может быть межузелъным, вакансионным, обменным и циклическим (рис.). Реализация того или иного механизма протекания диффузии определяется кристаллическим строением вещества и типом дефектов его кристаллической решетки. Так, доказано, что основным механизмом диффузии примесных атомов в твердых растворах замещения является вакансионный, а в твердых растворах внедрения — межузельный.

Рис. 3 Схемы механизмов протекания диффузии: амежузельный; б — вакансионный; в — обменный; г — циклический

 

По геометрическому месту переноса атомов выделяют объемную, поверхностную (из внешней среды) и граничную (по границам зерен) диффузии. Для совершения элементарного акта диффузии атом должен преодолеть энергетический барьер. Наиболее легко диффузия протекает по поверхности и границам зерен, где сосредоточены дефекты кристаллического строения (вакансии, дислокации и др.). Объемная диффузия в твердых веществах обусловлена перескоками атомов из одного положения в другое, относительно свободное.

Поверхностная диффузия связана с переносом вещества или на поверхность материала из внешней среды, или с поверхности материала во внешнюю среду, или на поверхность материала из его объема, или же в глубь материала с его поверхности (сорбционные процессы).

Сорбция — поглощение твердым телом или жидкостью какого-либо вещества из окружающей среды. Поглощающее тело называется сорбентом, поглощаемое — сорбтивом (сорбатом).

По месту поглощения атомов различают поверхность и объем. При этом сорбционные процессы, протекающие на поверхности, называются адсорбцией, а в объеме — абсорбцией. Сорбционные процессы избирательны и обратимы. Обратный процесс выделения поглощенного компонента -называется десорбцией.

Адсорбция — поглощение вещества из газовой или жидкой среды поверхностным слоем твердого тела (адсорбента) или жидкости.

Абсорбция поглощение какого-либо вещества из окружающей среды всей массой поглощающего тела (абсорбента). Абсорбция жидким абсорбентом какого-либо компонента из газовой смеси называется растворением, из жидкой смеси — экстракцией.

Природу диффузии по характеру сорбционных процессов рассматривают как физическую, если вещество при сорбционных процессах сохраняет все свои свойства, или химическую (хемосорбция), если вещество в этих процессах вступает в реакции. При физической природе сорбционные процессы обусловлены вандерваальсовыми силами притяжения частиц окружающей среды к частицам вещества.

Диффузия молекул в полимерах отличается от диффузии в кристаллических веществах. Отличия обусловлены большими размерами и массой молекул полимеров и их малой тепловой энергией. С процессом диффузии связаны структурные изменения в материалах, которые могут ухудшать их физические и механические свойства. Диффузия в значительной степени определяет кинетику физико-химических процессов, обусловливающих разрушение материалов, ползучесть, старение, коррозию и др. Адсорбция газов или жидкостей из внешней среды приводит к ухудшению диэлектрических свойств изоляционных материалов, понижает прочность металлов и изменяет другие свойства.

 

Лекция 2

 

НАПРЯЖЕНИЯ И ДЕФОРМАЦИЯ. МЕХАНИЧЕСКИЕ СВОЙСТВА

 

Деформацией называется изменение формы и размеров тела под действием напряжений. Напряжение – сила, действующая на единицу площади сечения детали.

Деформация металла под действием напряжений может быть упругой и пластической. Упругой называется деформация, полностью исчезающая после снятия вызывающих ее напряжений. При упругом деформировании изменяются расстояния между атомами металла в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места, и деформация исчезает. Зависимость между упругой деформацией и напряжением выражается законом Гука , где: Е - модуль упругости.

Модуль упругости является важнейшей характеристикой упругих свойств металла. Пластической или остаточной называется деформация после прекращения действия вызвавших ее напряжений.

При пластическом деформировании одна часть кристалла перемещается по отношению к другой под действием касательных напряжений. При снятии нагрузок сдвиг остается, т.е. происходит пластическая деформация.

Пластическая деформация может протекать под действием касательных напряжений и может осуществляться двумя способами.

1. Трансляционное скольжение по плоскостям. Одни слои атомов кристалла скользят по другим слоям, причем они перемещаются на дискретную величину, равную целому числу межатомных расстояний.

2. Двойникование – поворот одной части кристалла в положение симметричное другой его части. Плоскостью симметрии является плоскость двойникования.

 




Поделиться с друзьями:


Дата добавления: 2014-10-31; Просмотров: 816; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.027 сек.