![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основные понятия и определения
Определение. Всякий ненулевойминор матрицы А, порядок которого равен рангу матрицы называется базисным минором. В последнем 4-м примере Столбцы и строки матрицы, на которых стоит базисный минор, также называются базисными. В матрице может быть несколько различных базисных миноров, имеющих одинаковый порядок. В курсе алгебры важную роль играет теорема о базисном миноре, которую мы приведем без доказательства: Теорема о базисном миноре. Теорема. В произвольной матрице А каждый столбец (строка) является линейной комбинацией ее базисных столбцов (строк). Таким образом, ранг произвольной матрицы А равен максимальному числу линейно независимых строк (столбцов) в матрице. Если А- квадратная матрица и D(A) = 0, то по крайней мере один из столбцов – линейная комбинация остальных столбцов. То же самое справедливо и для строк. Данное утверждение следует из свойства линейной зависимости при определителе равном нулю.
ГЛАВА 3. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. Система m линейных уравнений с n неизвестными имеет вид:
где aij, bi – произвольные числа, называемые соответственно коэффициентами и свободными членами уравнений. В более краткой записи с помощью знаков суммирования систему можно записать в виде:
Решением системы являются n чисел (х1=a1, х2=a2… хn=an), при подстановке которых в систему каждое ее уравнение обращается в тождество. Определение. Если система имеет хотя бы одно решение, то она называется совместной. Если система не имеет ни одного решения, то она называется несовместной. Определение. Система называется определенной, если она имеет только одно решение и неопределенной, если более одного. Определение. Для системы линейных уравнений матрица А =
А*= Две системы уравнений называются равносильными (эквивалентными), если они имеют одно и то же множество решений. С помощью элементарных преобразований системы уравнений, рассмотренных в гл.2 применительно к матрицам (например, умножение обеих частей уравнений на числа, не равные нулю; сложение уравнений системы), получается система, равносильная данной. Систему (1.1) можно записать в матричной форме: А=
Дата добавления: 2014-10-31; Просмотров: 325; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |