Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Многоступенчатые ракеты и ракетно-космические системы




Схема с несущими баками

Переходная схема

Схема с подвесными баками

ОДНОСТУПЕНЧАТЫЕ ЖИДКОСТНЫЕ РАКЕТЫ.

Жидкостных баллистических ракет дальнего действия и ра­кет-носителей к настоящему времени создано очень много. Но надо начинать с наиболее простого и наглядного. Поэтому мы обратимся к самой старой и имеющей сейчас лишь историческое значение немецкой ракете «Фау-2». Ее считают первой жидкостной баллистической ракетой.

Слово «первая», однако, нуждается в разъяснениях. Уже в предвоенные, тридцатые, годы принципы конструкции баллистической жидкостной ракеты хорошо были известны специалистам. Уже существовали (и в первую очередь в Советском Союзе) достаточно совершенные жидкостные ракетные двигатели. Уже разрабатывались и создавались гироскопические системы для стабилизации ракет. Уже испытывались первые образцы жидкостных ракет, предназначенных для исследования стратосферы. Поэтому ракета «Фау-2» возникла не на ровном месте. Но на серийное производство она вышла первой. Также первой она нашла и военное применение, когда в пароксизме отчаяния, в 1943 г. немецкое командование

 
 

дало приказ о бессмысленном обстреле этой ракетой жилых кварталов Лондона. Ко­нечно, этот шаг никак не мог повлиять на общий ход военных событий. Кудабольшее влияние оказала прославленная отече­ственная ракетная артиллерия, совершенные образцы которой испытывались в первые дни Отечественной войны непосредственно на полях сражений. Но сейчас не о военном применении ракет идет речь.Сколь бы ни печальна была история ракеты «Фау-2», нас в данном случае интересует только схема ее устройства и прин­ципы компоновки. Для нас — это весьма удобное аудиторное пособие, которое поможет читателю ознакомиться с общим устройством вообще всех баллистических жидкостных ракет, и не только с устройством. С высот накопленного к настоящему вре­мени опыта легко дать оценку этой конструкции и показать, как в дальнейшем развивались ее достоинства и устранялись недо­статки: какими путями шел технический прогресс.

Стартовый вес ракеты «Фау-2» составлял примерно 13 тс, а дальность ее действия приближалась к 300 км. Ракета в разрезе показана на плакате.

Корпус жидкостной баллистической ракеты делится по длине на несколько отсеков (рис.3.1): топливный отсек (Т. О), включающий в себя баки горючего 1 и окислителя 2; хвостовой отсек (X. О) с двигателем и приборный отсек (П. О), к которому пристыкована боевая часть (Б. Ч). Само понятие «отсек» связано не только с функциональным назначением какой-то части ракеты, но, в первую очередь, с наличием поперечных разъемов, допускающих раздельную поагрегатную сборку и последующую стыковку. В некоторых типах ракет приборный отсек как самостоятельная часть корпуса отсутствует, а приборы управления поблочно размещаются в свободном пространстве с учетом удобства подходов и обслуживания на старте и минимальной про­тяженности кабельной сети.

Как и все управляемые баллистические ракеты, «Фау-2» снабжена автоматом стабилизации. Гироприборы и прочие блоки автомата стабилизации расположены в приборном отсеке и смонтированы на крестовидной панели.

Исполнительными органами автомата стабилизации являются газоструйные и воздушные рули. Газоструйные рули 3 располагаются в струе истекающих из камеры 4 газов и крепятся со своими приводами — рулевыми машинами — на жестком рулевом кольце 5. При отклонении рулей возникает момент, поворачивающий ракету в нужном направлении. Так как газоструйные рули работают в исключительно тяжелых температурных условиях, они изготовлялись из наиболее термостойкого материала — графита. Воздушные рули 6 играют вспомогательную роль и дают эффект только в плотных слоях атмосферы и при доста­точно большой скорости полета.

В качестве топливных компонентов в ракете «Фау-2» используется жидкий кислород и этиловый спирт. Поскольку острая проблема охлаждения двигателя не могла в то время получить должного решения, проектанты пошли на потерю удельной тяги, забалластировав этиловый спирт водой и снизив его концентра­цию до 75%. Общий запас спирта на борту ракеты составляет 3,5 г, а жидкого кислорода — 5г.

Основными элементами двигателя, расположенного в хвостовом отсеке, является камера 4 и турбонасосный агрегат (ТНА) 7, предназначенный для подачи топливных компонентов в камеру сгорания.

Турбонасосный агрегат состоит из двух центробежных насосов — спиртового и кислородного, установленных на общем валу с газовой турбиной. Турбина приводится в действие продуктами разложения перекиси водорода (водяной пар + кислород), которые образуются в так называемом парогазогенераторе (ПГГ) (на рисунке не виден). Перекись водорода подается в реактор ПГГ из бака 3 и разлагается в присутствии катализатора — водного раствора перманганата натрия, подаваемого из бачка 9. Эти компоненты вытесняются из баков сжатым воздухом, содержащимся в баллонах 10. Таким образом, работа двигательной установки обеспечивается общим счетом четырьмя компонентами — двумя основными и двумя вспомогательными для парогазогенерации. Не следует, конечно, забывать и о сжатом воздухе, запас которого необходим для подачи вспомогательных компонентов и для работы пневмоавтоматики.

Перечисленные элементы — камера, ТНА, баки вспомогательных компонентов, баллоны со сжатым воздухом — вместе с подводящими трубопроводами, клапанами и прочей арматурой монтируются на силовой раме 11 и образуют общий энергетический блок, который и называется жидкостным ракетным двигателем (ЖРД).

При сборке ракеты рама двигателя пристыковывается к заднему шпангоуту 12 и закрывается тонкостенной подкрепленной оболочкой — корпусом хвостового отсека, снабженного четырьмя стабилизаторами.

Тяга двигателя ракеты «Фау-2» на Земле составляет 25 тс, а в пустоте — около 30 тс. Если эту тягу разделить на суммар­ный весовой расход, состоящий из 50 кгс/сек спирта, 75 кгс/сек кислорода и 1,7 кгс/сек перекиси водорода и перманганата, то получим удельную тягу 198 и 237 единиц на Земле и в пустоте соответственно. По современным понятиям такая удельная тяга для жидкостных двигателей считается, конечно, очень низкой.

Обратимся к так называемой силовой схеме. Этому довольно ясному по смыслу понятию трудно подобрать краткое и четкое определение. Силовая схема представляет собой то конструктивное решение, в основу которого положены соображения прочности и жестко­сти всей конструкции, ее способность противостоять нагрузкам, действующим на ракету в целом.

Можно провести аналогию. У высших животных силовая схема — скелетная. Кости скелета являются основными несущими элементами, поддерживающими тело и замыкающими на себя все мышечные усилия. Но скелетная схема не единственная. Панцирь рака, краба и других им подобных существ может рассматриваться не только как средство защиты, но и как элемент общей силовой схемы. Такую схему следовало бы назвать оболочечной. При более глубокой осведомленности в области биологии можно было бы, по-видимому, найти примеры и других силовых схем в природе. Но сейчас речь — о силовой схеме ракетной конструкции.

На участке выведения ракеты «Фау-2» тяга двигателя передается на задний силовой шпангоут 12. Ракета движется с ускорением, и во всех поперечных сечениях корпуса, расположенных выше силового шпангоута, возникает осевая сжимающая сила. Вопрос заключается в том, какие элементы корпуса должны ее воспринимать — баки, продольные подкрепления, специальная рама или, может быть, достаточно в

баках создать повышенное давление, и тогда конструкция обретет несущую способность подобно хорошо накачанной автомобильной шине. Решение этого вопроса и составляет предмет выбора силовой схемы.

В ракете «Фау-2» принята схема внешнего силового корпуса и подвесных баков. Силовой корпус 13 представляет собой стальную оболочку с продольно-поперечным набором подкрепляющих элементов. Продольные подкрепляющие элементы называются стрингерами, а наиболее мощные из них — лонжеронами. Поперечные кольцевые элементы называют шпангоутами. Для удобства монтажа корпус ракеты имеет продольный болтовой разъем.

Нижний кислородный бак 2 опирается на тот же самый силовой шпангоут 12, к которому, как уже говорилось, крепится рама двигателя с хвостовым обтекателем. Спиртовой бак подвешивается на переднем силовом шпангоуте 14, с которым стыкуется и приборный отсек.

Таким образом, в ракете «Фау-2» топливные баки исполняют только роль емкостей и в силовую схему не включаются, а главным силовым элементом является корпус ракеты. Но он рассчитывается не только на нагрузки участка выведения. Важно еще обеспечить прочность ракеты при подходе к цели, и это обстоятельство заслуживает особого обсуждения.

После выключения двигателя газоструйные рули не могут выполнять своих функций, а так как выключение производится уже на большой высоте, где практически отсутствует атмосфера, то полностью теряют эффективность также воздушные рули и хвостовой стабилизатор. Поэтому после выключения двигателя ракета становится неориентируемой. Полет происходит в режиме неопределенного вращения относительно центра масс. При входе в сравнительно плотные слои атмосферы хвостовой стабилизатор ориентирует ракету по полету, и на конечном участке траектории она движется головной частью вперед, несколько затормаживаясь в воздухе, но,сохраняя к моменту встречи с целью скорость 650—750 м/сек.

Процесс стабилизации связан с возникновением больших аэродинамических нагрузок на корпус и хвостовое оперение. Это — неконтролируемый полет с углами атаки, меняющимися в пределах ±180°. Обшивка нагревается, а в поперечных сечениях корпуса возникают значительные изгибающие моменты, на которые в основном и ведется расчет на прочность.

По первому впечатлению кажется неясным, так ли уж необходимо заботиться о прочности ракеты на заключительном участке траектории. Ракета почти долетела, и дело, как будто, сделано. Даже если корпус и разрушится, боевая часть все равно достигнет цели, взрыватели сработают, и разрушительное действие ракеты будет обеспечено.

Такой подход, однако, неприемлем. Нет никаких гарантий, что при разрушении корпуса не будет поврежден сам боевой заряд, а такое повреждение в сочетании с местным перегревом чревато преждевременным траекторным взрывом. Кроме того, в условиях разрушения конструкции процесс последующего движения обладает очевидной непредсказуемостью. Даже исправная, неразрушающаяся ракета и то получает на атмосферном участке свободного полета некоторое неопределенное изменение вектора скорости. Аэродинамические силы могут увести и действительно уводят ракету от расчетной траектории. В дополнение к неизбежным ошибкам для участка выведения появляются новые неучитываемые погрешности. Ракета падает с недолетом, перелетом, ложится правее или левее цели. Возникает рассеивание, которое вследствие неопределенных условий входа в атмосферу заметно возрастает. Если же смириться с разрушением корпуса и соответственно — с потерей стабилизации и скорости, то затяжная неопределенность движения приведет и вовсе к недопустимому увеличению рассеивания. Происходит нечто подобное тому, что мы видим, когда следим за траекторией осыпающихся листьев: та же неопределенность траектории и та же потеря скорости. Кстати, снижение скорости у цели для боевой ракеты типа «Фау-2» также нежелательно. Кинетическая энергия массы ракеты и энергия взрыва остатков топливных компо­нентов для такого вида оружия давали вполне ощутимую прибавку к боевому действию тонны взрывчатого вещества, находящегося в головной части ракеты.

Итак, корпус ракеты должен быть достаточно прочным на всех участках траектории. И если теперь, не вникая в подробности, критически взглянуть на ракету «Фау-2» в целом, то можно сделать вывод, что именно силовая схема является наиболее слабым местом этой конструкции, поскольку необходи­мость чрезмерного усиления корпуса существенно снижает весовые характеристики ракеты. Следовательно, необходимо искать иное конструктивное решение.

При анализе силовой схемы, естественно, возникает мысль отказаться от несущего корпуса и возложить силовые функции на стенки баков, дополнительно, быть может, усилив их и поддержав умеренным внутренним давлением. Но такое решение пригодно лишь для активного участка. Что же касается стабилизации ранеты при возвращении на атмосферный участок траектории, тс от этого придется отказаться и сделать головную часть отделяющейся.

Таким образом, рождается силовая схема с несущими баками. Топливные баки должны удовлетворять условиям прочности только при регламентированных, заранее определенных нагрузках и тепловых режимах активного участка. После выключения двигателя происходит отделение головной части, снабженной собственным аэродинамическим стабилизатором. С этого момента корпус ракеты с уже выключенной двигательной установкой и головная часть летят практически по общей траектории, раздельно и не имея определенной угловой ориентации. При входе в плотные слои атмосферы корпус, обладающий большим аэродинамическим сопротивлением, начинает отставать, разрушается, и его части падают, не долетая до цели. Головная часть стабилизируется, сохраняет относительно высокую скорость и доносит боевой заряд в заданную точку. При такой схеме, понятно, кинетическая энергия массы ракеты не включается в эффект боевого действия. Однако снижение общего веса конструкции позволяет компенсировать эту потерю увеличением полезной нагрузки. В случае же перехода к ядерной боевой головке кинетическая энергия массы ракеты вообще не имеет значения.

Теперь посмотрим, что же мы получаем и что теряем; каков актив и пассив при переходе к схеме несущих баков и отделяю­щейся головной части. Очевидно, в актив следует записать отсутствие силового корпуса и отсутствие хвостового стабилиза­тора, надобность в котором теперь отпадает. В актив надо запи­сать возможность перехода от стали к более легким алюминиево-магниевым сплавам: атмосферный участок выведения ракета проходит с относительно небольшой скоростью, и нагрев корпуса невелик. И, наконец, есть еще одно важное обстоятельство. Расчетные нагрузки на активном участке обладают достаточно высокой степенью достоверности; они регламентированы точно выдерживаемыми условиями выведения. Что же касается входа в атмосферу, то для этого участка траектории нагрузки определяются с меньшей точностью. Доверие к расчетным нагрузкам активного участка позволяет снизить назначаемый коэффициент запаса, что для ракеты с отделяющейся головной частью дает дополнительное снижение веса.

В пассив придется внести некоторое увеличение веса баков; их надо усилить. Возможно, придется сюда же записать дополнительный вес сжатого воздуха и систем наддува топливных баков. В пассив запишется также и вес нового стабилизатора головной части. Но, конечно, такой стабилизатор весит много меньше, чем старый, предназначенный для ракеты в целом. И, наконец, от старого стабилизатора могут сохраниться некоторые рудименты в виде так называемых пилонов. На них возлагается две задачи. Пилоны дают некоторое стабилизирующее действие, что позволяет несколько упростить условия работы автомата стабилизации. Кроме того, пилоны позволяют вынести воздушные рули, если таковые имеются, подальше от корпуса в свободный и «незатененный» аэродинамический поток.

Естественно, что в подобных рассуждениях за и против нельзя довольствоваться только умозрительными утверждениями. Нужен подробный проектный анализ, числовые оценки и расчет. А такой расчет указывает на несомненные весовые преимущества новой силовой схемы.

Приведенные соображения относятся только к ракетам, имеющим турбонасосную систему подачи. Если же подача компонентов осуществляется высоким давлением, создаваемым в топливных баках (такая подача называется вытеснительной), то логика силовой схемы несколько меняется.

В случае вытеснительной подачи топливные баки рассчитываются в первую очередь на внутреннее давление, и, удовлетворяя условию прочности по давлению, такие баки, как правило, автоматически удовлетворяют как прочностным, так и температурным требованиям во всех режимах полета. Следовательно, им и на роду написано быть несущими. Подвесные баки при вытеснительной подаче были бы очевидной нелепицей.

Бак, рассчитанный на высокое внутреннее давление вытеснительной подачи, удовлетворяет, как правило, и условию прочности корпуса при входе в атмосферу. Следовательно, отделение головной части для такой ракеты не обязательно, но тогда корпус должен быть снабжен хвостовым стабилизатором.

Идея отделяющейся головной части впервые была реализована в 1949 г. на одной из самых ранних отечественных баллистических ракет – Р-2. На ее основе была создана несколько позже и геофизическая модификация ракеты — В2А. Конструкция ракеты В2А представляет собой любопытный и поучительный гибридный вариант старой и новой нарождающейся силовых схем и заслуживает обсуждения, как пример развития конструкторской мысли.

Ракета имеет только один несущий бак — передний, спирто­вой, а кислородный бак помещен в облегченный силовой корпус, рассчитанный только на нагрузки активного участка. Отделяющаяся головная часть 2 снабжена собственным хвостовым стабилизатором 3, представляющим собою подкреп­ленную оболочку в форме усеченного конуса. В геофизическом варианте стабилизатор 3 спасаемой головной части имеет механизм для раскрытия тормозных щитков 4, которые снижают скорость падения головной части до 100—150 м/сек, после чего раскрывается парашют. На рисунке 2 показана головная часть после приземления. Виден смятый носовой амортизирующий наконечник 1 и раскрытые щитки 4, частично оплавившиеся при торможении в атмосфере.

Торцевой шпангоут стабилизатора головной части крепится специальными замками к опорному шпангоуту, расположенному в верхней части спиртового бака. После команды на разделение замки размыкаются, а головная часть получает небольшой импульс от пружинного толкателя.

Приборный отсек 8 имеет свободно отпирающиеся замковые люки с герметизацией и расположен не в верхней, а в нижней части ракеты, что представляет определенные удобства для проведения предстартовых операций.

Рассматривая ракету В2А более детально, можно было бы отметить и другие ее особенности. Но главное не в этом. Поразительной и в то же время весьма поучительной особенностью этой конструкции является логическое несоответствие между принципом отделяющейся головной части и наличием хвостового стабилизатора. На участке выведения ориентация ракеты обеспечивается автоматом стабилизации. Что же касается аэродинамической стабилизации при входе в плотные слои атмосферы, то хвостовое оперение здесь не может ничем помочь, поскольку кор­пус не обладает для этого необходимой прочностью.

Конечно, было бы наивностью полагать, что проектанты не видели или не понимали этого. Конструкция, попросту говоря, явилась обычным, часто встречающимся в инженерной практике техническим компромиссом — уступкой временным обстоятельствам. Уже был накоплен опыт создания ракет со стабилизаторной схемой и с подвесными баками. Отработанная система газо­струйных и воздушных рулей была надежной и не вызывала опасений, а автомат стабилизации не требовал серьезной переналадки, которая была бы неизбежной при переходе к новым аэродинамическим формам. Поэтому в обстановке, когда еще велись теоретические дискуссии, чем грозит переход на бесстабилизаторную аэродинамически неустойчивую схему, проще было, не дожидаясь создания новых отработанных систем управления, остановиться на старой. Потеряв что-то в весовых показателях, легче было утвердиться на определенных уже завоеванных позициях. На пути к реальному воплощению схемы с несущими баками нужно было найти нечто среднее между стремлением к скорейшему достижению цели и опасностью длительной экспериментальной доводки, между неизбежной пе­реналадкой производства и использованием уже существующей цеховой оснастки, между риском неудачи и разумной предусмотрительностью. Иначе серией неудач при пусках, что вовсе не исключено, можно было бы скомпрометировать идею в самой основе и дать пищу стойкому недоверию к новой схеме, сколь бы многообещающей и логически обоснованной она ни была.

И еще один, не столь важный, но любопытный психологический аспект. Конструкция ракеты В2А по тем временам не казалась необычной. Сила привычки видеть на всех существовавших до того маленьких и больших ракетах хвостовое оперение сохраняла у стороннего наблюдателя иллюзию обыденности, и внешний вид ракеты не провоцировал на преждевременную и неквалифицированную критику конструкции в целом. То же самое можно сказать и по поводу конструкции кислородного бака. Использование жидкого кислорода в ту пору было средоточием особых мнений, основанных на беспокойстве по поводу низкой температуры кипения этого топливного компонента. Наличие теплоизоляции кислородного бака на ракете В2А успокаивало многих и не перегружало и без того достаточный круг забот, стоящих перед главным конструктором. Надо было показать, что несущий спиртовой бак исправно выполняет силовые функции, что головная часть успешно отделяется и благополучно достигает цели, а автоматика и приборы управления, расположенные вблизи двигателя, несмотря на повышенный уровень вибрации, способны работать так же хорошо, как они работали, находясь в головном отсеке.

Переход к новой силовой схеме был связан, естественно, с одновременным решением и ряда других принципиальных вопросов. Это касалось, прежде всего, конструкции двигателя. Двигатель РД-101, установленный на ракете В2А, обеспечивал 37 и 41,3 тс земной и пустотной тяги или 214 и 242 единицы удельной тяги у поверхности Земли и в пустоте соответственно. Достигалось это повышением концентрации спирта до 92%, повышением давления в камере и дополнительным расширением выходного сечения сопла.

Создатели двигателя отказались от жидкого катализатора для разложения перекиси водорода. Он был заменен твердым катализатором, заранее закладываемым в рабочую полость парогазогенератора. Таким образом, число жидких компонентов уменьшилось с четырех, как это было у «Фау-2», до трех. Появился и новый, ставший вскоре тради­ционным, торовый баллон для перекиси водорода, удобно вписывающийся в компоновку ракеты. Было положено начало и некоторым другим нововведениям, перечислять которые здесь не имеет смысла.

Естественно, что ракета В2А как переходной вариант от одной силовой схемы к другой не могла, да и не должна была воспроизводиться в последующих модернизированных формах. Необходимо было полностью реализовать идею несущих баков и отделяющейся головной части, что и было сделано С. П. Королевым в последующих разработках.

Первые образцы ракет с несущими баками были испытаны и отработаны в начале 50-х годов. После этого отрабатывались некоторые модификации. Так, в частности, появилась и метеорологическая ракета В5В (боевая ракета Р-5). Ныне макетный образец баллистической ракеты с несущими баками занимает почетное место исторического экспоната перед входом в музей Советской Армии в Москве.

При переходе на новую модернизированную схему в целях повышения дальности был увеличен стартовый вес и форсирован режим работы двигателя. Переход на схему несущих баков, конечно, более высокий уровень технологии и тщательная проработка конструкции позволили довести коэффициент весо­вого качества αк до 0,127 (вместо 0,25 у «Фау-2») при относи­тельном конечном весе µk ~ 0,16.

Наиболее серьезным переработкам в ракете В5В подверга­лась система управления. Как-никак, но это была первая аэро­динамически неустойчивая ракета, снабженная очень небольшим хвостовым оперением и воздушными рулями. На этой же ракете в дальнейшем впервые были применены гироплатформа и новый принцип функционального выключения двигателя.

На ракете В5В в качестве топлива по-прежнему использо­вался 92%-ный этиловый спирт и жидкий кислород. Отработка ракеты показала, что отсутствие теплоизоляции на боковой поверхности кислородного бака не влечет за собой не­приятных последствий. Несколько повышенное испарение кисло­рода за время предстартовой подготовки легко компенсируется подпиткой, т. е. автоматизированной дозаправкой кислорода не­посредственно перед стартом. Эта операция необходима вообще для всех ракет на низкокипящих топливных компонентах.

Таким образом, после ракеты В5В схема несущих баков и от­деляющейся головной части стала реальностью. Все современ­ные жидкостные баллистические ракеты дальнего действия и их более высокая ступень — ракеты-носители создаются ныне толь­ко на основе этой силовой схемы. Именно ее развитие на базе современной технологии и бесчисленных конструктивных улуч­шений породило обобщенный образ той машины, которая по справедливости символизирует вершины технического прогресса нашего времени.

Сейчас ракету В5В можно рассматривать столь же критически, как во времена ее создания рассматривалась ракета «Фау-2». При сохранении общей компоновки и основных принципов сило­вой схемы возможно дальнейшее снижение веса и повышение ос­новных характеристик, а пути решения этой задачи легко просма­триваются и уясняются на примерах более поздних конструкций.

На рис. 3.3 показан одноступенчатый вариант американской баллистической ракеты «Тор»; она выполнена также по типичной схеме несущих баков и имеет отделяющуюся головную часть. Суммарный вес топливных компонентов (кислород + керосин) составляет 45 тс при чистом весе конструкции (без головной ча­сти) 3,6 тс. Это означает следующее. Если условно принять суммарный вес остатков топлива 0,4 тс, то для знакомого нам ко­эффициента весового качества αк получим значение 0,082. При­нимая вес головной части примерно 2 тс, получаем параметр µK = 0,12. Можно также установить, что при удельной пустотной тяге кислородно-керосинового топ­лива, принятой равной 300 единицам, дальность этой ракеты составляет 3000 км.

В основе высоких весовых показате­лей современных ракет, в частности и этой, лежит тщательная проработка мно­гих элементов, перечислить которые было бы очень трудно, но некоторые, доста­точно общие и типичные, указать можно.

Стенки топливных баков 1 и 2 имеют вафельную конструкцию. Это — тонко­стенная оболочка, изготовленная из вы­сокопрочного алюминиевого сплава с ча­сто расположенными продольно-попе­речными подкреплениями, играющими ту же роль, что и силовой набор в корпусе ракеты «Фау-2», но с большим ве­совым качеством. Широко распростра­ненная в настоящее время вафельная конструкция изготовляется обычно механическим фрезерованием. В ряде случаев, однако, применяется и хи­мическое фрезерование. Заготовка обечайки исходной толщины h0 подвергается тщательно контролируе­мому травлению в кислоте по той части поверхности, где необходимо убрать лишний металл (остальная часть поверх­ности предварительно покрывается ла­ком). Оставшаяся после травления тол­щина h должна обеспечить герметич­ность и прочность образовавшейся пане­ли при заданном внутреннем давлении, а продольные и поперечные ребра сооб­щают оболочке повышенную жесткость на изгиб, которой определяется устойчи­вость конструкции при осевом сжатии. Регулярность распределения продоль­ных и поперечных ребер преднамеренно нарушается в зоне сварных швов, которые, как известно, обла­дают несколько пониженной прочностью по сравнению с листом проката, а также — у торцов обечайки, где еще предстоит при­варить днища. В этих местах толщина заготовки сохраняется неизменной.

Существуют и другие способы изготовления вафельных кон­струкций. Однако мы сознательно остановились на химическом фрезеровании, чтобы показать, какой ценой в прямом и пере­носном смысле достигаются те весовые показатели конструкции, которые свойственны современной ракетной технике.

Ракета «Тор» имеет укороченный и облегченный хвостовой отсек З, на торце которого крепятся два управляющих двига­теля. Отказ от газоструйных рулей связан, естественно, с их высоким газодинамическим сопротивлением в струе истекающих газов. Применение управляющих двигателей несколько услож­няет конструкцию, но дает существенный выигрыш в удельной тяге.

Из сказанного не должно складываться впечатления, что уп­равляющие камеры появились впервые именно на этой балли­стической ракете. Такая система силовых органов управления применялась в различных исполнениях и раньше, в частности, на ракете-носителе системы «Восток» или «Союз», о которых речь впереди. Одноступенчатый вариант ракеты «Тор» рассматривается здесь исключительно как пример следующего за раке­той В5В поколения баллистических ракет.

Почти на всех баллистических ракетах устанавливаются так­же и тормозные твердотопливные двигатели 6. Это — тоже не из последних новинок. Задача тормозных двигателей заключается в том, чтобы, затормозив корпус ракеты, отвести его от головной части при ее отделении; именно — корпус, не сообщая головной части дополнительной скорости.

Выключение жидкостного двигателя не является мгновенным. После закрытия клапанов топливных магистралей в течение последующих долей секунды в камере еще продолжается горе­ние и испарение оставшихся компонентов. В результате ракета получает небольшой дополнительный импульс, называемый им­пульсом последействия. При расчете дальности на него вводится поправка. Однако сделать это точно невозможно, поскольку им­пульс последействия не обладает стабильностью и меняется от случая к случаю, что является одной из существенных причин рассеивания по дальности. С тем, чтобы уменьшить это рассеи­вание, и используются тормозные двигатели. Момент их включения согласовывается с командой на выключение жидкостного двигателя таким образом, чтобы импульс последействия в ос­новном был скомпенсирован.

Будет поучительным сопоставить геометрические пропорции ракет В5В и «Тор». Ракета В5В более вытянута. Отношение длины к диаметру (так называемое удлинение ракеты) для нее существенно больше, чем у ракеты «Тор»; примерно 14 про­тив 8. Различие в удлинениях вызывает и различные заботы. С увеличением удлинения снижается частота собственных поперечных колебаний ракеты, как упругой балки, и это заставляет считаться с возмущениями, которые поступают на вход системы стабилизации в результате угловых перемещений при изгибе корпуса. Иными словами, должна быть обеспечена стабилизация уже не жесткой, а изгибающейся ракеты. В некоторых случаях это вызывает серьезные трудности,

При малом удлинении ракеты этот вопрос естественно сни­мается, но зато возникает другая неприятность — возрастает роль возмущений от поперечных колебаний жидкости в баках, и если надлежащим подбором параметров автомата стабилизации не удается их парировать, приходится устанавливать в баках перегородки, ограничивающие подвижность жидкости. На рисунке частично показаны узлы 7 для крепления гасителей колебаний в баке горючего. Естественно, такое решение приводит к ухуд­шению весовых характеристик ракеты.

Ракету «Тор» не следует рассматривать как образец совер­шенства. Вместе с тем, любым критическим замечаниям по по­воду ее компоновки проектанты могли бы, наверное, противопо­ставить и свои контрдоводы. На примере ракеты В2А мы уже ви­дели, что обоснованная критика конструктивного решения может проводиться только с учетом конкретных условий проектирования и производства, а главное — перспективных задач, которые ста­вят перед собой создатели новой машины. А ракета «Тор» относится как раз к числу таких, на базе которых возможно создание ракетно-космических систем.




Поделиться с друзьями:


Дата добавления: 2014-10-31; Просмотров: 1946; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.059 сек.