Температуростойкость оценивают предельной температурой применения материала. Выше этой температуры материал изменяет свою структуру, теряет механическую прочность и разрушается, а органические материалы могут загораться. Предельную температуру применения устанавливают несколько ниже значения температуростойкости в целях предосторожности, и указывают в технической характеристике материала. Теплоемкость имеет существенное значение в условиях частых теплосмен, так как в этих условиях необходимо учитывать теплоту, поглощаемую (аккумулированную) теплоизоляционным слоем. Теплоемкость неорганических материалов колеблется от 0,67 до 1 кДж/кг°С. С увеличением влажности материала его теплоемкость резко возрастает, т.к. для воды при 4°С она составляет 4,2 кдж/кг°С. Увеличение теплоемкости отмечается и при повышении температуры. Огнестойкость характеризует сгораемость материала, т.е. его способность воспламеняться и гореть при воздействии открытого пламени. Сгораемые материалы можно применить только при осуществлении мероприятий по защите от возгорания и возможности использования средств пожаротушения. Возгораемость определяется при воздействии температуры 800-850°С и выдержке в течение 20 мин.
Плотность для жестких материалов – отношение массы сухого материала к его объему, а плотность волокнистого – это отношение массы сухого материала к его объему, но определенному при заданной нагрузке. Прочность при сжатии определяется при 10% деформации. Это величина напряжения, вызывающего изменение толщины изделия на 10%. Это величина напряжения, вызывающего изменение толщины изделия на 10%. Прочность теплоизоляционных материалов вследствие их пористого строения относительно невелика. Предел прочности при сжатии обычно колеблется от 0,2 до 2,5 МПа. Материалы, у которых прочность выше 0,5 МПа, называют теплоизоляционно-конструктивными и используют для несущих ограждающих конструкций. Для некоторых видов теплоизоляционных материалов основной характеристикой является предел прочности при изгибе (плиты, скорлупы, сегменты) или при растяжении (маты, войлок, асбестовый картон и пр.) Во всех случаях требуется, чтобы прочность теплоизоляционного материала была достаточной для его транспортирования, сохранности, монтажа и работы в конкретных эксплутационных условиях. Сжимаемость – способность материала изменять толщину под действием заданного давления. Материалы по сжимаемости мягкие М: деформация свыше 30%. Полужесткие ПЖ – деформация 6-30%, жесткие – деформация не более 6%. Сжимаемость характеризуется относительной деформацией материала при сжатии под действием удельной 0,002 МПа нагрузки. Водопоглощение значительно ухудшает теплоизоляционные свойства и понижает прочность и долговечность. Материалы с закрытыми порами, например, пеностекло, имеют низкое водопоглощение (менее 1%). Для уменьшения водопоглощения, например, при изготовлении минераловатных изделий зачастую вводят гидрофобные добавки, которые позволяют уменьшить сорбционную влажность в процессе эксплуатации. Газо- и паропроницаемость учитывают при применении теплоизоляционного материала в ограждающих конструкциях. Теплоизоляция не должна препятствовать воздухообмену жилых помещений с окружающей средой через наружные стены зданий. В случае повышенной влажности производственных помещений теплоизоляцию защищают от увлажнения с помощью надежной гидроизоляции, укладываемой с «теплой» стороны. Химическую и биологическую стойкость теплоизоляции повышают, применяя различные защитные покрытия или обрабатывая их антисептиками. Высокопористое строение теплоизоляционных материалов способствует прониканию в них жидкостей, газов и паров, находящихся в окружающей среде. Взаимодействие их с материалом может вызвать его разрушение. Органические материалы или материалы, содержащие в своем составе органические компоненты (связующие вещества, крахмал, клей и пр.) или волокнистые наполнители (древесное волокно), должны обладать биологической стойкостью. При увлажнении таких материалов возникает опасность разрушения их грибками или микроорганизмами. Поэтому при использовании теплоизоляционных материалов в местах, которые подвержены увлажнению, в процессе эксплуатации необходимо обрабатывать их антисептиками. При использовании теплоизоляционных материалов в ограждающих конструкциях они могут подвергаться воздействию попеременного замораживания и оттаивания, что может привести к их разрушению, и потере в связи с этим, теплозащитных свойств. Главным условием обеспечения работоспособность таких конструкций является защита теплоизоляционного материала от увлажнения, которая может произойти за счет миграции влаги (от «теплого» к «холодному») и конденсации водяных паров, которая наиболее интенсивно происходит в холодное время года.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление