КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Защита от ионизирующих излучений 2 страница
Рис. 6.51. Импеданс среды для элементарных излучателей в зависимости от расстояния от источника:
среды – воздуха – будет равен (для воздуха μ≈μ0, ε≈ε) Z1=ZEH=√μ1/ε1≈√μ0ε0≈ 377 Ом. Однако в зоне индукции импеданс Z1 зависит не только от вида основной составляющей электромагнитного поля |см. формулы (6.59) и (6.60)]. Он определяется также формой конструкции экрана (рис. 6.52). С учетом формы импеданс Z1 при экранировании электрического поля записывают в виде Z1=Z1E=Z*/jkr*m=1/jωε1r*m а при экранировании магнитного поля в виде Z1 = Z1H=jk1r*mZ*=jωμ1r*m, где т = 2 при r* = l/2 для плоского экрана; т = 1 при r* = р –для цилиндрического экрана; т = 1/√z при r* = r–для сферического экрана (см. рис. 6.52). Тогда при k*h, что обычно достигается на низких частотах (f< 104 Гц), chk*h ≈ 1, a thk*h ≈k*h и эффективность экранирования электрического поля (Z1E/Z2>Z2/Z1H) Рис. 6.52. Конструкции экранов
Эта эффективность будет большой на низких частотах, а в диапазоне относительно высоких частот е → 0. При экранировании магнитного поля необходимо учитывать особенности материала, из которого изготовлен экран. Обычно для магнитных металлов (сталь, пермаллой, феррит)Z1/Z2H>Z1H/Z2, а для немагнитных металлов (медь, алюминий, свинец) Z1H/Z2 > Z2/Z1H. Тогда для защитных устройств из магнитных металлов эффективность экранирования.
Она не зависит от частоты. Для защитных устройств из немагнитных металлов. Эта эффективность зависит от частоты и при частоте ω→0 тоже стремится к нулю. В области относительно высоких частот (104 <f, Гц < 109) эффективность экранирования удобно определять* по формуле
Из соотношения импедансов следует, что амплитудные коэффициенты [формула (6.38)] для плоского Tn, цилиндрического Tц и сферического Тc экранов при Z1>Z2 и имеют приблизительно следующее соотношение: Tn:Tц:Tс = 1:2:3. Это соотношение справедливо для экранов, изготовленных из одинакового материала и имеющих равную толщину стенок, причем расстояние между параллельными пластинами плоского экрана равно диаметру сферического или цилиндрического экранов (l = 2r или 2p). Таким образом, если эффективность экранирования плоским экраном принять за исходное значение en = 20lg1/Tn, то эффективность экранирования цилиндром ец = 201g |1/Tц| = 201g|l/Tn| = en–20 lg 2 ≈ Сп–6 дБ, а эффективность экранирования сферой eс= en–9,5 дБ. При экранировании магнитного поля магнитными материалами (Z2>Z1) соотношение амплитудных коэффициентов передачи будет иметь обратную закономерность Тn:Тц:Тe = 1:1/2:1/3. На практике полученными соотношениями пользуются при определении, например, эффективности цилиндрического экрана по формулам плоского.
В области СВЧ, охватывающей дециметровые, сантиметровые и миллиметровые волны (f ^ 109...1010 Гц), длина волны λ соизмерима с диаметром экрана d, т. е. λ≥ d, и эффективность экранирования носит колебательный характер (рис. 6.53). В этой области импеданс Z1при экранировании Р и с. 6.53. Колебательный характер эффективности экранирования ЭМП в диапазоне СВЧ: а – электрическое поле; б – магнитное поле; h1 - 0,01мм, h2 = 0,001мм, r = 5 мм магнитного и электрического полей цилиндрическим экраном следует определять по формулам:
где Jn(u и Нп(и) – функции Бесселя* соответственно первого и третьего рода, порядка п (штрихом отмечены производные). С учетом соотношений (5.63) эффективность экранирования рассчитывают по формуле (6.61), при этом надо иметь в виду, что во многих случаях можно принять Z1/Z2<<1 и пренебречь этим слагаемым. При наличии в экране для радиоэлектронной аппаратуры отверстий или щелей, возникающих вследствие несовершенства его конструкции и технологии изготовления, среднюю эффективность экранирования можно определить по эмпирической формуле
где импеданс Z1 = Z1H при экранировании электрического поля; Z1≈Z1H при экранировании магнитного поля; импеданс | Z2│ =│ ωμ2σ2│; слагаемые А и множитель В = 2πh/l учитывают негерметичность экрана где r*=0,62V1/3 – эквивалентный радиус экрана любой геометрической формы (V– внутренний объем экрана); l–наибольший размер отверстия (щели) в экране; k1=ω√μ0ε0. Формула (6.64) применима в диапазоне частот, пока kl < 2, l > 0. Для защиты от ЭМП обычно применяют металлические листы, которые обеспечивают быстрое затухание поля в материале. Однако во многих случаях экономически выгодно вместо металлического экрана использовать проволочные сетки, фольговые и радиопоглощающие материалы, сотовые решетки. Эффективность экранирования электрического поля при использовании проволочных сеток е =10lg│ZE/Z│+A+8,686C * Обычно функцию Н1(и) находят по формуле: H1 (и) = J1(u) + jY(u). Чтобы найти производную, можно использовать соотношение: Q1(Z) = Q0(u)–1/2Q(u), где и означает любую функцию Y, Н или любую их линейную комбинацию. Функции Бесселя даны в виде таблиц в справочниках [6.1]. Здесь слагаемое А означает то же, что в выражении (6.64) (k1l< 2), а множитель С и величину z при заданном диаметре провода d и шаге s сетки рассчитывают по формулам: С= π d/(s–d), z =l/G2h*, где эквивалентная толщина сетки L*=πd2/4s. В сортамент фольговых материалов толщиной 0,01...0,05 мм входят в основном диамагнитные материалы–алюминий, латунь, цинк. Расчет эффективности экранирования фольговых материалов производится по формулам для тонких материалов. При негерметичности эффективность экранирования электрического поля где Z=1/σ2h. Радиопоглощающие материалы изготовляют в виде эластичных и жестких пенопластов, тонких листов, рыхлой сыпучей массы или заливочных компаундов. В табл. 6.11 приведены характеристики некоторых радиопоглощающих материалов. В последнее время все большее распространение получают керамикометаллические композиции. Эффективность экранирования сотовыми решетками зависит вплоть до сантиметрового диапазона от отношения глубины к ширине ячейки. Таблица 6.1.1. Основные характеристики радиопоглощающих материалов
Ориентировочно эффективность e≈27l/lм+20lgn где l и lм – глубина и максимальный поперечный размер ячейки сотовой решетки; п – число ячеек. Ослабление лазерного излучения светофильтрами. Если при прямом лазерном облучении невооруженного глаза (рис. 6.54) на поверхность Р и с. 6 54 Схема воздействия на роговицу глаза лазерного излучения: а –прямое облучение, б – диффузное излучение роговицы площадью πr2 приходится энергия ε,то энергетическая экспозиция H=ε∕πr2. Как видно из рис. 6.54, а, расстояние до расчетной точки ввиду малости угла Y R = (r*– r)/Y. Поэтому опасное расстояние где H*. –допустимое нормами значение H для роговицы глаза. При облучении диффузным излучением, отраженным от площадки, которая характеризуется углом θ (рис. 6.54, б) и коэффициентом отражения, опасное расстояние При использовании для защиты светофильтра толщиной h коэффициент передачи через светофильтр τ= = е-δh = 10-δh где δ и δ=δ’ ln10 – соответственно натуральный и десятичный показатели ослабления. В общем случае показатель ослабления светофильтра зависит от толщины h и спектра излучения. Поэтому при расчете ослабления пользуются оптической плотностью светофильтра D = lgl/т. Она связана с эффективностью защиты соотношением: e=10 lgkw = 10 lgl/τ = 10D. Оптическую плотность D рассчитывают в зависимости от характеристик излучения. Если в момент времени t число нераспавшихся атомов радиоактивного источника N= N(t), то за интервал времени dt распадется dN атомов и активность радионуклида* А = – N, а постоянная распада ω = – N/N. Отсюда следует: A(t)=N(t)ω=N0ωe-ωt=Aoe-ωt (6.65) * Здесь и далее приняты следующие обозначения, точка над некоторой величиной х = x(t) обозначает отношение приращения величины х за интервал времени dr к этому интервалу xo=dx/dt. Через xo обозначается значение величины х в начальный момент времени: xo = x(0). Так как масса одного атома равна а/п (где а – атомная масса, а п= = 6,022∙1023 –число Авогадро), то N атомов имеют массу М=Na/n и, следовательно, активность источника массой М равна А = ω Мп/а Из выражения (6.65) видно, что постоянная распада ω связана с полупериодом распада T1/2 T1/2 –время, за которое распадается половина атомов источника: N(t) = No/2) соотношением ω = ln2/T1/2. Защита от γ-излучения. Мощность (поглощенной) дозы γ-излучения в воздухе D (аГр/с) прямо пропорциональна активности А (Бк) точечного нуклида и обратно пропорциональна квадрату расстояния r (м) от изотропного источника до приемника:
где Г – керма-постоянная, (аГр • м2)(c • Бк). Интегрируя выражение (6.66), можно найти дозу в воздухе за некоторый интервал времени Т Формулы (6.66) и (6.67) справедливы для расчета полей излучения точечных источников* в непоглощающей и нерассеивающей среде. Они позволяют выбрать такие значения А, r, t, при которых будут соблюдаться установленные нормами предельно допустимые уровни излучения. Если нормам удовлетворить нельзя, то между источником и приемником γ-излучения располагают защиту. Точечным источником обычно можно считать источник, размеры которого значительно меньше расстояния до приемника и длины свободного пробега в материале источника (можно пренебречь ослаблением излучения в источнике). При прохождении излучением защитной среды приемник регистрирует (рис. 6.55) как непровзаимодействовавшие со средой излучение 1, так и однократно 2 и многократно 3 и 4 рассеянное излучение. Излучение 5...9 не достигает приемника: излучение 5, 6 из-за поглощения в среде, излучение 7, 8 из-за направления траектории за защитной средой не на приемник, а излучение 9 – вследствие отражения. В первом приближении расчет защиты можно произвести, учитывая только нерассеянное излучение. Мощность дозы излучения D при установке защитного экрана толщиной h (см. рис. 6.55) претерпевает изменение на расстоянии г по экспоненциальному закону:
где δ – линейный коэффициент ослабления. Определяя коэффициент защиты в виде kw=D+/D- находят эффективность защиты e=10lgkw≈4,34бh Чтобы учесть рассеянное излучение, мощность поглощенной дозы представляют в виде суммы где D и B – соответственно мощность дозы нерассеянного излучения при наличии защиты и некоторая прибавка к этой мощности, учитывающая наличие рассеянного излучения; безразмерная величина В = B(δh,ε,z) называется фактором накопления. Фактор накопления зависит от всех характеристик источника и защитной среды, в том числе от толщины экрана. Его обычно определяют экспериментально и представляют в виде В = (1+ΔD˜/D˜), где ε и z – соответственно энергия у-квантов и атомный номер защитной среды. В табл. 6.12 приведены значения фактора накопления и линейного коэффициента ослабления для некоторых материалов. С учетом рассеянного излучения коэффициент и эффективность защиты равны: В качестве примера вычислим коэффициент и эффективность защиты для свинцового экрана толщиной h= 13 см при работе с точечным радионуклидным источником. Пользуясь табл. 6.12, определяем, что без учета рассеянного излучения е = 4,34 0,77 • 13,0 = 43,4 дБ {kw» 2,2 • 104), а с учетом рассеянного излучения е = 43,4-–101g3,74 ≈ 37,7 дБ (kw» 5.9 • 103). Для случая, когда линия И–П (см. рис. 6.55) нормальна к поверхности защитного устройства (экрана). Таблица 6.12. Фактор накопления линейный коэффициент ослабления некоторых материалов, используемых при защите от излучений
Защита от нейтронного излучения. Пространственное распределение плотности потока (мощности дозы) нейтронов в большинстве случаев можно описать экспериментальной зависимостью φ = φ0с8h. В расчетах вместо линейного коэффициента ослабления δ часто используют массовый коэффициент ослабления δ=δ/p, где р–плотность защитной среды. Тогда произведение 6h может быть представлено в виде δh=δ*∙(ph)=δ*m* где m, –поверхностная плотность экрана. С учетом этого где L и L* – соответственно линейная и массовая длина релаксации нейтронов в среде. На длине релаксации, т. е. при h = L или при m* = L*, плотность потока (мощность дозы) нейтронов ослабляется в е раз (kw = е). Некоторые значения т* и L*, для разных защитных сред даны в табл. 6.13. Таблица 6.13. Длины релаксации нейтронов в среде в зависимости от среды и энергии нейтронов
Так как длина релаксации зависит от толщины защиты, плотность потока (мощность дозы) нейтронов обычно определяют по формуле где ∆ hi и т – соответственно толщина i-го слоя защиты, при которой длина релаксации может быть принята постоянной, равной Li, и число слоев, на которые разбита защита. На начальном участке толщиной (2...3)L закон ослабления может отличаться от экспоненциального, что учитывают коэффициентом θ (см. табл. 6.13), на который умножаются правые части соотношений (6.68) и (6.69). При проектировании защиты от нейтронного излучения необходимо учитывать, что процесс поглощения эффективен для тепловых, медленных и резонансных нейтронов, поэтому быстрые нейтроны должны быть предварительно замедлены. Тяжелые материалы хорошо ослабляют быстрые нейтроны. Промежуточные нейтроны эффективнее ослаблять водородосодержащими веществами. Это означает, что следует искать такую комбинацию тяжелых и водородосодсржащих веществ, которые давали бы наибольшую эффективность (например, используют комбинации Н2О + Fe, Н2О + Pb). Защита от заряженных частиц. Для защиты от α и β-частиц излучения достаточно иметь толщину экрана, удовлетворяющую неравенству: h > Ri,, где Ri, – максимальная длина пробега α (i = α) или β(i = β) частиц в материале экрана. Длину пробега рассчитывают по эмпирическим формулам. Пробег Rα-частиц (см) при энергии ε= 3...7 МэВ и плотности материала экрана ρ(г/см3) Максимальный пробег β-частиц
Обычно слой воздуха в 10 см, тонкая фольга, одежда полностью экранируют α-частицы, а экран из алюминия, плексигласа, стекла толщиной несколько миллиметров полностью экранируют поток β-частиц. Однако при энергии β-частиц ε> 2 МэВ существенную роль начинает играть тормозное излучение, которое требует более усиленной защиты.
Дата добавления: 2014-11-25; Просмотров: 471; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |