КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Кванторы
Предикаты Конструкция, сопоставляющая нескольким объектам высказывание, называется предикатом. Предикаты делятся на одноместные, двухместные, трехместные и т.д. в соответствии с числом объектов, которого они требуют. Для записи их используют функциональные обозначения. Предикат можно записать в виде функции с незаполненными местами для аргументов, например P (), L (,), I (,,) или же в виде P (x), L (z, y), I (x, y, z) оговорив, что x, y, z — предметные переменные, т. е. символы, которые в конечном счете должны быть заменены на объекты, но какие — пока неизвестно. Впрочем, вторая форма изображает, строго говоря, уже не предикат, а высказывание, содержащее предметные переменные. Вместо больших букв мы будем также использовать словосочетания в кавычках, например, «красный»(x), «между»(x, у, z) и специальные математические знаки, например, <(х, у). Одноместный предикат выражает свойство объекта, предикат более чем с одним аргументом — отношение между объектами. Если места для аргументов в предикате заполнены, то мы имеем дело с высказыванием, утверждающим наличие данного свойства или отношения. Высказывание «красный»(«мяч») означает, что «мяч» обладает свойством «красный». Конструкция <(a, b) равнозначна соотношению (неравенству) a < b. Соединяя предикатные конструкции логическими связками, мы получаем более сложные высказывания. Например, соотношение | z | > 1, которое мы раньше записывали, не расчленяя высказываний на элементы, мы запишем теперь в виде >(z, 1) ∨ <(z, -1). В математике большую роль играют утверждения о всеобщности данного свойства и о существовании хотя бы одного объекта, обладающего данным свойством. Для записи этих утверждений вводятся так называемые кванторы: квантор всеобщности ∀ и квантор существования ∃. Допустим, что некоторое высказывание S содержит переменную (неопределенный объект) х, поэтому будем записывать его в виде S (x). Тогда высказывание (∀ x) S (x) означает, что для всех х имеет место S (x), а высказывание (∃ x) S (x) состоит в утверждении, что существует хотя бы один объект х такой, что для него верно высказывание S (x). Переменная, входящая в высказывание под знаком квантора, называется связанной переменной, ибо высказывание от этой переменной не зависит, подобно тому как сумма i = n ∑ mSi не зависит от индекса i. Связанную переменную можно заменить любой другой буквой, не совпадаюшей с остальными переменными, и от этого смысл высказывания не изменится. Переменная, которая не является связанной, называется свободной. Высказывание зависит только от свободных переменных, которые оно содержит. Примеры высказываний с кванторами:
Квантор — это тоже в сущности логическая связка. Приписывание квантора превращает высказывание в новое высказывание, которое содержит на одну свободную переменную меньше. Отличие от связок, которое мы рассматривали выше, состоит в том, что, кроме высказывания, надо указать еще свободную переменную, которую надо связать. Связывание переменной подразумевает подстановку вместо нее конкретных объектов. Если число объектов, которые могут быть подставлены вместо переменной, конечно, то кванторы можно рассматривать просто как удобные сокращения, ибо они могут быть выражены через логические связки — конъюнкцию и дизъюнкцию. Пусть переменная х может принимать n значений, которые мы обозначим буквами х 1, х 2,..., xn. Тогда имеют место следующие эквивалентности: (∀ x) W (x) ≡ W (x 1) ∧ W (x 2) ∧... ∧ W (xn), (∃ x) W (x) ≡ W (x 1) ∨ W (x 2) ∨... ∨ W (xn). 6.10. Связка «такой, что» Третья строка таблицы, приведенной в разделе 6.6, описывает конструкцию, которая высказыванию сопоставляет объект. В естественных языках эта конструкция употребляется чрезвычайно широко. Когда мы говорим «красный мяч», мы имеем в виду объект «мяч», который обладает свойством «красный», т. е. такой, что верно высказывание «красный» («мяч»). Высказывание об объекте мы переносим в прилагательное, относящееся к существительному, которым мы обозначили объект, в других случаях для этой цели могут служить причастия, причастные обороты, обороты со связками «который», «такой, что». Если мы пойдем дальше в этом анализе, то обнаружим, что и существительное, подобно прилагательному, указывает в первую очередь на определенное свойство (свойства) объекта. Слово «мяч», как и слово «красный», изображает некоторый класс объектов и ему можно сопоставить одноместный предикат «является мячом»(х), или просто «мяч»(х). Тогда «красный мяч» это такой предмет a, что верны высказывания «мяч»(a) и «красный»(a), иначе говоря, верно высказывание «мяч»(a) ∧ «красный»(a) Обратите внимание: в логической записи фигурирует три независимых элемента — буква a, предметы «мяч» и «красный», а в записи на естественном языке их остается только два «красный» и «мяч». Однако буква a, которую в логическую запись вводят для того, чтобы идентифицировать данный объект, отличить его от других, и которую поэтому называют идентификатором, не совсем исчезла в естественной записи. Она перешла в понятие «мяч», превратив его из свойства в предмет! В отличие от слова «красный» слово «мяч» идентифицирует — вы можете сказать «это тот мяч, который мы потеряли вчера» или «я имею в виду тот самый мяч, о котором говорил в предыдущей фразе». Что же такое «предмет»?
Дата добавления: 2014-11-25; Просмотров: 468; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |