Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Текст лекции. Лекция № 5. Процессы и внешние события




Ключевые вопросы

Лекция № 5. Процессы и внешние события. Часть 2

 

· Основные понятия и определения: операционная система (ОС), программное обеспечение (ПО), системное программное обеспечение.

· Алгоритмы планирования, основанные на квантования.

· Алгоритмы планирования, основанные на приоритетах

· Концепция квантования.

 

11.2.1 Алгоритмы планирования, основанные на квантовании — до 15 мин.

 

В основе многих вытесняющих алгоритмов планирования лежит концепция квантования. В соответствии с этой концепцией каждому потоку поочередно для выполнения предоставляется ограниченный непрерывный период процессорно­го времени – квант. Смена активного потока происходит, если:

- поток завершился и покинул систему;

- произошла ошибка;

- поток перешел в состояние ожидания;

- исчерпан квант процессорного времени, отведенный данному потоку.

Поток, который исчерпал свой квант, переводится в состояние готовности и ожи­дает, когда ему будет предоставлен новый квант процессорного времени, а на вы­полнение в соответствии с определенным правилом выбирается новый поток из очереди готовых. Граф состояний потока, изображенный на рисунке 11.1, соответству­ет алгоритму планирования, основанному на квантовании.

Рисунок 11.1 – Граф состояний потока в системе с квантованием

Кванты, выделяемые потокам, могут быть одинаковыми для всех потоков или различными. Рассмотрим, например, случай, когда всем потокам предоставляют­ся кванты одинаковой длины q (рисунок 11.2). Если в системе имеется n потоков, то время, которое поток проводит в ожидании следующего кванта, можно грубо оце­нить как q(n-l). Чем больше потоков в системе, тем больше время ожидания, тем меньше возможности вести одновременную интерактивную работу нескольким пользователям. Но если величина кванта выбрана очень небольшой, то значение произведения q(n-l) все равно будет достаточно мало для того, чтобы пользова­тель не ощущал дискомфорта от присутствия в системе других пользователей. Типичное значение кванта в системах разделения времени составляет десятки миллисекунд.

Рисунок 11.2 – Иллюстрация расчета времени ожидания в очереди

Если квант короткий, то суммарное время, которое проводит поток в ожидании процессора, прямо пропорционально времени, требуемому для его выполнения (то есть времени, которое потребовалось бы для выполнения этого потока при монопольном использовании вычислительной системы). Действительно, поскольку время ожидания между двумя циклами выполнения равно q(n-l), а количество циклов B/q, где В – требуемое время выполнения, то W=B(n-l). Эти соотношения представляют собой весьма грубые оценки, осно­ванные на предположении, что В значительно превышает q. При этом не учиты­вается, что потоки могут использовать кванты не полностью, что часть времени они могут тратить на ввод-вывод, что количество потоков в системе может ди­намически меняться и т. д.

Чем больше квант, тем выше вероятность того, что потоки завершатся в ре­зультате первого же цикла выполнения, и тем менее явной становится зависи­мость времени ожидания потоков от их времени выполнения. При достаточно большом кванте алгоритм квантования вырождается в алгоритм последова­тельной обработки, присущий однопрограммным системам, при котором вре­мя ожидания задачи в очереди вообще никак не зависит от ее длительности.

Кванты, выделяемые одному потоку, могут быть фиксированной величины, а могут и изменяться в разные периоды жизни потока. Пусть, например, перво­начально каждому потоку назначается достаточно большой квант, а величина каждого следующего кванта уменьшается до некоторой заранее заданной ве­личины. В таком случае преимущество получают короткие задачи, которые успевают выполняться в течение первого кванта, а длительные вычисления будут проводиться в фоновом режиме. Можно представить себе алгоритм планирования, в котором каждый следующий квант, выделяемый определен­ному потоку, больше предыдущего. Такой подход позволяет уменьшить на­кладные расходы на переключение задач в том случае, когда сразу несколько задач выполняют длительные вычисления.

Потоки получают для выполнения квант времени, но некоторые из них ис­пользуют его не полностью, например, из-за необходимости выполнить ввод или вывод данных. В результате возникает ситуация, когда потоки с интен­сивными обращениями к вводу-выводу используют только небольшую часть выделенного им процессорного времени. Алгоритм планирования может ис­править эту «несправедливость». В качестве компенсации за неиспользован­ные полностью кванты потоки получают привилегии при последующем об­служивании. Для этого планировщик создает две очереди готовых потоков (рисунок 11.3). Очередь образована потоками, которые пришли в состояние го­товности в результате исчерпания кванта времени, а очередь 2 – потоками, у которых завершилась операция ввода-вывода. При выборе потока для выпол­нения, прежде всего, просматривается вторая очередь, и только если она пуста, квант выделяется потоку из первой очереди.

Многозадачные ОС теряют некоторое количество процессорного времени для выполнения вспомогательных работ во время переключения контекстов задач. При этом запоминаются и восстанавливаются регистры, флаги и указатели сте­ка, а также проверяется статус задач для передачи управления. Затраты на эти вспомогательные действия не зависят от величины кванта времени, поэтому чем больше квант, тем меньше суммарные накладные расходы, связанные с переклю­чением потоков.

Рисунок 11.3 – Квантование с предпочтением потоков, интенсивно обращающихся к вводу-выводу


11.2.2 Алгоритмы планирования, основанные на приоритетах

 

Другой важной концепцией, лежащей в основе многих вытесняющих алгорит­мов планирования, является приоритетное обслуживание. Приоритетное обслу­живание предполагает наличие у потоков некоторой изначально известной характеристики – приоритета, на основании которой определяется порядок их выполнения. Приоритет – это число, характеризующее степень привилегиро­ванности потока при использовании ресурсов вычислительной машины, в част­ности процессорного времени: чем выше приоритет, тем выше привилегии, тем меньше времени будет проводить поток в очередях.

Приоритет может выражаться целым или дробным, положительным или отрица­тельным значением. В некоторых ОС принято, что приоритет потока тем выше, чем больше (в арифметическом смысле) число, обозначающее приоритет. В дру­гих системах, наоборот, чем меньше число, тем выше приоритет.

В большинстве операционных систем, поддерживающих потоки, приоритет по­тока непосредственно связан с приоритетом процесса, в рамках которого выпол­няется данный поток. Приоритет процесса назначается операционной системой при его создании. Значение приоритета включается в описатель процесса и используется при назначении приоритета потокам этого процесса. При назначении приоритета вновь созданному процессу ОС учитывает, является этот процесс системным или прикладным, каков статус пользователя, запустившего процесс, было ли явное указание пользователя на присвоение процессу определенного уровня приоритета, Поток может быть инициирован не только по команде поль­зователя, но и в результате выполнения системного вызова другим потоком. В этом случае при назначении приоритета новому потоку ОС должна принимать во внимание значение параметров системного вызова.

Во многих ОС предусматривается возможность изменения приоритетов в тече­ние жизни потока. Изменение приоритета могут происходить по инициативе самого потока, когда он обращается с соответствующим вызовом к операцион­ной системе, или по инициативе пользователя, когда он выполняет соответст­вующую команду. Кроме того, ОС сама может изменять приоритеты потоков в зависимости от ситуации, складывающейся в системе. В последнем случае при­оритеты называются динамическими в отличие от неизменяемых, фиксирован­ных, приоритетов.

От того, какие приоритеты назначены потокам, существенно зависит эффектив­ность работы всей вычислительной системы. В современных ОС во избежание разбалансировки системы, которая может возникнуть при неправильном назна­чении приоритетов, возможности пользователей влиять на приоритеты процес­сов и потоков стараются ограничивать. При этом обычные пользователи, как правило, не имеют права повышать приоритеты своим потокам, это разрешено делать (да и то в определенных пределах) только администраторам. В большин­стве же случаев ОС присваивает приоритеты потокам по умолчанию.

В качестве примера рассмотрим схему назначения приоритетов потокам, приня­тую в операционной системе Windows NT (рисунок 11.4). В системе определено 32 уровня приоритетов и два класса потоков – потоки реального времени и по­токи с переменными приоритетами. Диапазон от 1 до 15 включительно отведен для потоков с переменными приоритетами, а от 16 до 31 – для более критичных ко времени потоков реального времени (приоритет 0 зарезервирован для систем­ных целей).

При создании процесса он в зависимости от класса получает по умолчанию ба­зовый приоритет в верхней или нижней части диапазона. Базовый приоритет процесса в дальнейшем может быть повышен или понижен операционной систе­мой. Первоначально поток получает значение базового приоритета из диапазона базового приоритета процесса, в котором он был создан. Пусть, например, значе­ние базового приоритета некоторого процесса равно К. Тогда все потоки данного процесса получат базовые приоритеты из диапазона [ К-2, К+2 ]. Отсюда видно, что, изменяя базовый приоритет процесса, ОС может влиять на базовые приори­теты его потоков.

Рисунок 11.4 – Схема назначения приоритетов в Windows NT

В Windows NT с течением времени приоритет потока, относящегося к классу по­токов с переменными приоритетами, может отклоняться от базового приоритета потока, причем эти изменения могут быть не связаны с изменениями базового приоритета процесса. ОС может повышать приоритет потока (который в этом случае называется динамическим) в тех случаях, когда поток не полностью ис­пользовал отведенный ему квант, или понижать приоритет, если квант был ис­пользован полностью. ОС наращивает приоритет дифференцированно в зави­симости от того, какого типа событие не дало потоку полностью использовать квант. В частности, ОС повышает приоритет в большей степени потокам, кото­рые ожидают ввода с клавиатуры (интерактивным приложениям) и в меньшей степени – потокам, выполняющим дисковые операции. Именно на основе дина­мических приоритетов осуществляется планирование потоков. Начальной точ­кой отсчета для динамического приоритета является значение базового приори­тета потока. Значение динамического приоритета потока ограничено снизу его базовым приоритетом, верхней же границей является нижняя граница диапазона приоритетов реального времени.

Существуют две разновидности приоритетного планирования: обслуживание с относительными приоритетами и обслуживание с абсолютными приоритетами.

В обоих случаях выбор потока на выполнение из очереди готовых осуществляет­ся одинаково: выбирается поток, имеющий наивысший приоритет. Однако про­блема определения момента смены активного потока решается по-разному. В сис­темах с относительными приоритетами активный поток выполняется до тех пор, пока он сам не покинет процессор, перейдя в состояние ожидания (или же про­изойдет ошибка, или поток завершится). На рисунок 11.5, показан граф состояний потока в системе с относительными приоритетами.

Рисунок 11.5 – Граф состояний потока в системе с относительными приоритетами

В системах с абсолютными приоритетами выполнение активного потока преры­вается кроме указанных выше причин, еще при одном условии: если в очереди готовых потоков появился поток, приоритет которого выше приоритета активно­го потока. В этом случае прерванный поток переходит в состояние готовности (рисунок 11.6).

В системах, в которых планирование осуществляется на основе относительных приоритетов, минимизируются затраты на переключения процессора с одной ра­боты на другую. С другой стороны, здесь могут возникать ситуации, когда одна задача занимает процессор долгое время. Ясно, что для систем разделения вре­мени и реального времени такая дисциплина обслуживания не подходит: интер­активное приложение может ждать своей очереди часами, пока вычислительной задаче не потребуется ввод-вывод. А вот в системах пакетной обработки (в том числе известной ОС OS/360) относительные приоритеты используются широко.

Рисунок 11.6 – Граф состояний потоков в системах с абсолютными приоритетами

В системах с абсолютными приоритетами время ожидания потока в очередях может быть сведено к минимуму, если ему назначить самый высокий приоритет. Такой поток будет вытеснять из процессора все остальные потоки (кроме пото­ков, имеющих такой же наивысший приоритет). Это делает планирование на ос­нове абсолютных приоритетов подходящим для систем управления объектами, в которых важна быстрая реакция на событие.

 




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 687; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.027 сек.