Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Генерирование высокочастотных колебаний




Высокочастотные генераторы предназначены для получе­ния электрических колебаний в диапазоне частот от десятков кГц до десятков и даже сотен МГц. Такие генераторы, как правило, вы­полняют с использованием LC-колебательных контуров или квар­цевых резонаторов, являющихся частотозадающими элементами. Принципиально схемы от этого существенно не изменяются, по­этому ниже будут рассмотрены LC-генераторы высокой частоты. Отметим, что в случае необходимости колебательные контуры в некоторых схемах генераторов (см., например, рис. 4, 5) мо­гут быть без проблем заменены кварцевыми резонаторами.

Рис. 1

(рис. 1, 2) выполнены по традиционной и хорошо зарекомендовавшей себя на практи­ке схеме «индуктивной трехточки». Они различаются наличием эмиттерной RC-цепочки, задающей режим работы транзистора (рис. 12.2) по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности (рис. 12.1, 12.2) делают отвод (обычно от ее 1/3…1/5 части, считая от заземленного вы­вода).

 

Нестабильность работы генераторов высокой частоты на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации «плавает». Для ослабления влияния транзистора на рабочую частоту генерации следует максимально ослабить связь коле­бательного контура с транзистором, до минимума уменьшив пе­реходные емкости. Кроме того, на частоту генерации заметно нпияет и изменение сопротивления нагрузки. Поэтому крайне необходимо между генератором и сопротивлением нагрузки иключить эмиттерный (истоковый) повторитель.

Для питания генераторов следует использовать стабильные источники питания с малыми пульсациями напряжения.

Рис. 2

Рис. 3

Генераторы, выполненные на полевых транзисторах (рис. 3), обладают лучшими характеристиками.

, собранные по схеме «ем­костной трехточки» на биполярном и полевом транзисторах, показаны на рис. 4 и 5. Принципиально по своим харак­теристикам схемы

«индуктивной» и «емкостной» трехточек не отличаются, однако в схеме «емкостной трехточки» не нужно делать лишний вывод у катушки индуктивности.

Во многих схемах генераторов (рис. 1 — 5 и другие схемы) выходной сигнал может сниматься непосредственно с ко­лебательного контура через конденсатор небольшой емкости или через согласующую катушку индуктивной связи, а также с неза- земленных по переменному току

электродов активного элемента (транзистора). При этом следует учитывать, что дополнительная нагрузка колебательного контура меняет его характеристики и ра­бочую частоту. Иногда это свойство используют «во благо» — для целей измерения различных физико-химических величин, контро­ля технологических параметров.

Рис. 4

Рис. 5

На рис. 6 показана схема несколько видоизмененного ва­рианта ВЧ генератора — «емкостной трехточки». Глубину положи­тельной обратной связи и оптимальные условия для возбуждения генератора подбирают с помощью емкостных элементов схемы.

Схема генератора, показанная на рис. 7, работоспособ­на в широком диапазоне значений индуктивности катушки коле­бательного контура (от 200 мкГч до 2 Гн) [Р 7/90-68]. Такой генератор можно использовать в качестве широкодиапазонного высокочастотного генератора сигналов или в качестве измери­тельного преобразователя электрических и неэлектрических ве­личин в частоту, а также в схеме измерения индуктивностей.

Генераторы на активных элементах с N-образной ВАХ (тун­нельные диоды, лямбда-диоды и их аналоги) содержат обычно

 

Рис. 6

Рис. 7

Рис. 8

источник тока, активный элемент и частотозадающий элемент (LC-контур) с параллельным или последовательным включением. На рис. 8 показана схема ВЧ генератора на элементе с лям- бдаобразной вольт-амперной характеристикой. Управление его частотой осуществляется за счет изменения динамической емко­сти транзисторов при изменении протекающего через них тока.

Светодиод HL1 стабилизирует рабочую точку и индицирует вклю­ченное состояние генератора.

Генератор на аналоге лямбда-диода, выполненный на поле­вых транзисторах, и со стабилизацией рабочей точки аналогом стабилитрона — светодиодом, показан на рис. 9. Устройство работает до частоты 1 МГц и выше при использовании указанных на схеме транзисторов.

 

Рис. 9

Рис. 10

Ма рис. 10 в порядке сопоставления схем по степени их сложности приведена практическая схема ВЧ генератора на туннельном диоде. В качестве полупроводникового низко­вольтного стабилизатора напряжения использован прямосме- щенный переход высокочастотного германиевого диода. Этот генератор потенциально способен работать в области наибо­лее высоких частот — до нескольких ГГц.

Высокочастотный генератор, по схеме очень напоминаю­щий рис. 7, но выполненный с использованием полевого транзистора, показан на рис. 11 [Рл 7/97-34].

Прототипом RC-генератора, показанного на рис. 11.18 яв­ляется схема генератора на рис. 12.12 [F 9/71-171; 3/85-131].

нот генератор отличает высокая стабильность частоты, способ­ность работать в широком диапазоне изменения параметров частотозадающих элементов. Для снижения влияния нагрузки на рабочую частоту генератора в схему введен дополнительный каскад — эмиттерный повторитель, выполненный на биполяр­ном транзисторе VT3. Генератор способен работать до частот свыше 150 МГц.

Рис. 11

 

Рис. 12

Из числа всевозможных схем генераторов особо следует выделить генераторы с ударным возбуждением. Их работа ос­нована на периодическом возбуждении колебательного конту­ра (либо иного резонирующего элемента) мощным коротким импульсом тока. В результате «электронного удара» в возбуж­денном таким образом колебательном контуре возникают по­степенно затухающие по амплитуде периодические колебания синусоидальной формы. Затухание колебаний по амплитуде обусловлено необратимыми потерями энергии в колебатель­ном контуре. Скорость затухания колебаний определяется добротностью (качеством) колебательного контура. Выходной высокочастотный сигнал будет стабилен по амплитуде, если импульсы возбуждения следуют с высокой частотой. Этот тип генераторов является наиболее древним в ряду рассматривае­мых и известен с XIX века.

Практическая схема генератора высокочастотных колеба­ний ударного возбуждения показана на рис. 13 [Р 9/76-52; 3/77-53]. Импульсы ударного возбуждения подаются на коле­бательный контур L1C1 через диод VD1 от низкочастотного генератора, например, мультивибратора, или иного генератора прямоугольных импульсов (ГПИ), рассмотренных ранее в гла­вах 7 и 8. Большим преимуществом генераторов ударного возбуждения является то, что они работают с использованием колебательных контуров практически любого вида и любой резонансной частоты.

Рис. 13

Рис. 14

Еще один вид генераторов — генераторы шума, схемы ко­торых показаны на рис. 14 и 15.

 

Такие генераторы широко используют для настройки раз­личных радиоэлектронных схем. Генерируемые такими устрой­ствами сигналы занимают исключительно широкую полосу частот — от единиц Гц до сотен МГц. Для генерации шума используют обратносмещенные переходы полупроводниковых приборов, работающих в граничных условиях лавинного пробоя. Дня этого могут быть использованы переходы транзисторов (рис. 14) [Рл 2/98-37] или стабилитроны (рис. 15) [Р 1/69-37]. Чтобы настроить режим, при котором напряжение генерируемых шумов максимально, регулируют рабочий ток через активный нтемент (рис. 15).

Рис. 15

Отметим, что для генерации шума можно использовать и резисторы, совмещенные с многокаскадными усилителями низ­кой частоты, сверхрегенеративные приемники и др. элементы. Для получения максимальной амплитуды шумового напряжения необходим, как правило, индивидуальный подбор наиболее шу­мящего элемента.

Для того чтобы создать узкополосные генераторы шума, на выходе схемы генератора может быть включен LC- или RC-фильтр.

2.5




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 2919; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.