КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теорема КотєльніковаАналогічні результати отримані і при використанні теореми Котєльнікова [7, 8]: довільний сигнал, спектр якого не має частот вище fm (Гц), може бути повністю відтворений, якщо відомі значення цього сигналу, взяті через рівні проміжки часу rt =1/(2´ fm) (c). У відповідності з цією теоремою сигнал s(t) обмежений за спектром найвищою частотою Wm=2× p ×Fm, можна представити рядом: (2.4) В цьому виразі = означає інтервал між двома відліками на осі часу, а = - вибірки функції s(t) в момент часу t= . Представлення заданої функції s(t) рядом (2.4) ілюструється рисунком 2.2.
Рисунок 2.2 - Представлення сигналу рядом Котєльнікова
Функція виду (2.5) має наступні властивості: 1) в точці t=n× × =1, а в точках t=k× t, де k – будь-яке ціле додатне або від’ємне число, яке не дорівнює n (k n), =0 2) Спектральна густина функції рівномірна в полосі частот і рівна .
Те, що ряд (2.4) точно визначає заданий сигнал s(t) в точках відліку, не потребує додаткового доведення, оскільки коефіцієнтами ряду є самі виборки із функції, тобто величини s(n´Δt). Можна довести, що ряд (2.4) визначає функцію s(t) в будь-який момент t, а не тільки в точках відліку t=n´Δt. Розкладемо сигнал по функціях виду (2.5) для яких інтервал ортогональності рівний нескінченності, а норма: (2.7) Не визначаючи наперед значення коефіцієнтів ряду (2.4) застосовуємо для їх визначення загальну формулу, справедливу для узагальненого ряду Фур’є: Сn= (2.8) При цьому ми виходимо з умови, що s(t) – квадратично інтегрована функція (енергія сигналу скінчена). Для обчислення інтегралу у виразі (2.8) скористаємося формулою: (2.9) Межі інтегрування тут приведені у відповідності із заданою граничною частотою у спектрі сигналу, а також у спектрі функції . Інтеграл у правій частині (2.9) з коефіцієнтом є не що інше, як значення s(t) в момент . Таким чином, (2.10) Підставляючи цей результат у (2.8) отримуємо кінцевий вираз: Сn= (2.11) Із якого слідує, що коефіцієнтами ряду (2.4) є вибірки функції s(t) в точках t= . Оскільки обмеження спектру кінцевою найвищою частотою забезпечує неперервність функції s(t), ряд (2.4) сходиться до функції s(t) при любому значенні t. Якщо взяти інтервал між вибірками меншим ніж , то ширина спектру функції буде більша ніж у спектру s(w) сигналу s(t) (рис.2.3), але це не відіб’ється на величині коефіцієнта Cn . Рисунок 2.3 - Зв’язок між спектром сигналу s(t) і спектром базисної функції φn(t)
Модуль функції зображений на рис.2.3 штриховою лінією. При збільшенні в порівнянні з спектр функції (на рис. 2.3 показаний штрих-пунктиром) стає вужчим ніж спектр сигналу s(t), і при обчисленні інтегралу у виразі (2.9) межі інтегрування повинні бути ) замість ). Коефіцієнти Сn при цьому є уже виборками не заданого сигналу s(t), а деякої іншої функції s1(t), спектр якої обмежений найвищою частотою . І так, зменшення інтервалів між вибірками в порівнянні з величиною допустимо, але не має змісту. Збільшення ж інтервалу понад величину недопустимо.
2.1.3 Стискання цифрових даних акустичного каротажу при передачі по каротажному кабелі При створенні комплексу модульних приладів для каротажа свердловин які буряться, необхідно враховувати і раціонально використовувати інформаційні можливості цифрових систем передачі даних по каротажному кабелі [9]. Найпоширеніші системи передачі цифрових даних типу “КАРАТ” (Тверьгеофизика) і “Сибирь-НВ” (Геоприм, м.Краснодар) базуються на протоколі цифрового каналу передачі даних кодами типу “Манчестер-2” (стандарт США MIL-STD-1553B) і забезпечують максимальну швидкість передачі даних 20 і 100 Кбіт/с відповідно. Розрахунки показують, що для комплексної апаратури, яка включає скануючі методи електричного каротажу високої роздільної здатності, багатозондового електромагнітного каротажу і багатоелементного хвильового акустичного каротажу, можливості типового цифрового каналу передачі даних будуть обмежувати швидкість каротажу. Істотний вклад в цю проблему вносить потік даних багатоелементного зонда АК. Так, наприклад, восьмиелементний зонд АК з часом дискретизації сигналів АК Δt = 2 мкс, тривалістю перетворення сигналу (траси) 4000 мкс і 16-розрядним АЦП забезпечує завантаження каналу передачі потоком даних 32000 біт на кожну точку глибини, що при кроці квантування за глибиною 10 см і швидкості каротажу 30 см/с (~1200 м/год) буде вимагати повного завантаження цифрового каналу зі швидкістю 200кбіт/с (час на передачу 16-розрядного слова разом зі службовими бітами для каналу 200кбіт/с складає 100мкс). Аналогічна проблема може виникнути в автономних комплексах каротажної апаратури на трубах, де на перший план виходить раціональне використання об’ємів флеш-пам’яті і економія енергії акумуляторів для збільшення часу автономної роботи системи. Для зменшення потоку цифрових даних хвильового АК запропонований і випробуваний метод стискання початкової інформації і наступного її відтворення – “метод характерних точок АК”. “Метод характерних точок” може застосовуватись як у варіанті обробки вже зформованого потоку цифрових даних АК у свердловинному приладі, так і у варіанті керування в реальному масштабі часу затримками запуску аналого-цифрового перетворення вхідних сигналів АК. Розглянемо перший варіант – робота з початковим потоком цифрових даних АК.
Дата добавления: 2014-11-25; Просмотров: 500; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |