КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Отрицание, конъюнкция, дизъюнкция
Простые и сложные высказывания. Высказывания
Высказывание – грамматически правильное предложение, взятое вместе с выражаемым им смыслом (содержанием) и являющееся истинным или ложным. Высказывание – более сложное образование, чем имя. При разложении высказываний на части, мы всегда получаем те или иные имена. Скажем, высказывание «Солнце есть звезда» включает в качестве своих частей имена «Солнце» и «звезда». Понятие высказывания – одно из ключевых в логике. Как таковое, оно не допускает точного определения, в равной мере приложимого в разных её разделах. Ясно, что всякое высказывание описывает определённую ситуацию, что-то утверждая или отрицая о ней, и является истинным или ложным. Высказывание считается истинным, если даваемое им описание соответствует реальной ситуации, и ложным, если не соответствует ей. «Истина» и «ложь» называются истинностными значениями высказывания. Из отдельных высказываний разными способами можно строить новые высказывания. Так, из высказываний «Дует ветер» и «Идёт дождь» можно образовать более сложные высказывания «Дует ветер и идёт дождь», «Либо дует ветер, либо идёт дождь», «Если идёт дождь, дует ветер» и т.п. Слова «и», «либо, либо», «если, то» и т.п., служащие для образования сложных высказываний, называются логическими связками. Высказывание называется простым, если оно не включает других высказываний в качестве своих частей. Высказывание является сложным, если оно получено с помощью логических связок из нескольких более простых высказываний. Может показаться, что знакомство с высказываниями естественнее всего начать с изучения простых высказываний и их частей, и уже затем приступить к изучению того, как из простых высказываний образуются сложные. В логике, однако, подход является обратным. Сначала рассматриваются способы построения сложных высказываний из более простых, при этом простое высказывание берётся как неразложимое далее целое (как «атом»), и только затем переходят к выявлению строения простых высказываний. Анализ структуры сложных высказываний предшествует анализу структуры простых. Объясняется это следующим: для того, чтобы понимать способы сочетания высказываний, вовсе не обязательно знать, что такое простое высказывание; достаточно учитывать только то, что последнее имеет определённое значение истинности. Простые высказывания чрезвычайно разнообразны, выявление составляющих их частей во многом зависит от принятого способа их анализа. Некоторые логические связи между высказываниями не зависят от строения простых высказываний. Разумно поэтому поступить так, как если бы мы знали все о простых высказываниях, т.е. оставить вопрос об их структуре на время в стороне и заняться логическими связями высказываний. Последняя задача является относительно лёгкой. Та часть логики, в которой описываются логические связи высказываний, не зависящие от структуры простых высказываний, называется общей теорией дедукции. Перейдём теперь к рассмотрению наиболее важных способов построения сложных высказываний. Отрицание – логическая связка, с помощью которой из данного высказывания получается новое, причём, если исходное высказывание истинно, его отрицание будет ложным, и наоборот. Отрицательное высказывание состоит из исходного высказывания и отрицания, выражаемого обычно словами «не», «неверно, что». Отрицательное высказывание является, таким образом, сложным высказыванием: оно включает в качестве своей части отличное от него высказывание. Например, отрицанием высказывания «10 – чётное число» является высказывание «10 не есть чётное число» (или: «Неверно, что 10 есть чётное число»). Будем обозначать высказывания буквами А, В, С, …, отрицание высказывания – символом ~. Полный смысл понятия отрицания высказывания задаётся условием: если высказывание Л истинно, его отрицание А ложно, и если А ложно, его отрицание, ~А, истинно. Например, так как высказывание «1 есть целое положительное число» истинно, его отрицание «1 не является целым положительным числом» ложно, а так как «1 есть простое число» ложно, его отрицание «1 не есть простое число» истинно. Определению отрицания можно придать форму таблицы истинности, в которой «и» означает «истинно» и «л» – «ложно».
В результате соединения двух высказываний при помощи слова «и», мы получаем сложное высказывание, называемое конъюнкцией. Высказывания, соединяемые таким способом, называются членами конъюнкции. Например, если высказывания «Сегодня жарко» и «Вчера было холодно» соединить связкой «и» получится конъюнкция «Сегодня жарко и вчера было холодно». Конъюнкция истинна только в случае, когда оба входящих в неё высказывания являются истинными; если хотя бы один из её членов ложен, то и вся конъюнкция ложна. Высказывание A может быть либо истинным, либо ложным, и то же самое можно сказать о высказывании B. Следовательно, возможны четыре пары значений истинности для этих высказываний. Обозначим конъюнкцию символом &. Таблица истинности для конъюнкции приведена ниже.
Определение конъюнкции, как и определения других логических связок, служащих для образования сложных высказываний, основывается на следующих двух предположениях: 1) каждое высказывание (как простое, так и сложное) имеет одно и только одно из двух значений истинности: оно является либо истинным, либо ложным; 2) истинностное значение сложного высказывания зависит только от истинностных значений входящих в него высказываний и способа их логической связи между собой. Эти предположения кажутся простыми. Приняв их, нужно, однако, отбросить идею, что, наряду с истинными и ложными высказываниями, могут существовать также высказывания неопределённые с точки зрения своего истинностного значения (такие, как, скажем, «Через пять лет в это время будет идти дождь с громом» и т.п.). Нужно отказаться также от того, что истинностное значение сложного высказывания зависит от «связи по смыслу» соединяемых высказываний. В обычном языке два высказывания соединяются союзом «и», когда они связаны между собой по содержанию, или смыслу. Характер этой связи не вполне ясен, но понятно, что мы не рассматривали бы конъюнкцию «Он шёл в пальто и я шёл в университет» как выражение, имеющее смысл и способное быть истинным или ложным. Хотя высказывания «2 – простое число» и «Москва – большой город» истинны, мы не склонны считать истинной также их конъюнкцию «2 – простое число и Москва – большой город», поскольку составляющие её высказывания не связаны между собою по смыслу. Упрощая значение конъюнкции и других логических связок и отказываясь для этого от неясного понятия «связь высказываний по смыслу», логика делает значение этих связок одновременно и более широким, и более ясным. Соединяя два высказывания с помощью слова «или», мы получаем дизъюнкцию этих высказываний. Высказывания, образующие дизъюнкцию, называются членами дизъюнкции. Слово «или» в повседневном языке имеет два разных смысла. Иногда оно означает «одно или другое или оба», а иногда «одно или другое, но не оба вместе». Высказывание «В этом сезоне я хочу пойти на „Пиковую даму“ или на „Аиду“» допускает возможность двукратного посещения оперы. В высказывании же «Он учится в Московском или в Саратовском университете» подразумевается, что упоминаемый человек учится только в одном из этих университетов. Первый смысл «или» называется неисключающим. Взятая в этом смысле дизъюнкция двух высказываний означает только, что по крайней мере одно из этих высказываний истинно, независимо от того, истинны они оба или нет. Взятая во втором, исключающем, смысле дизъюнкция двух высказываний утверждает, что одно из них истинно, а второе – ложно. Символ v будет обозначать дизъюнкцию в неисключающем смысле, для дизъюнкции в исключающем смысле будет использоваться символ V. Таблицы для двух видов дизъюнкции показывают, что неисключающая дизъюнкция истинна, когда хотя бы одно из входящих в неё высказываний истинно, и ложна, только когда оба её члена ложны; исключающая дизъюнкция истинна, когда истинным является только один из её членов, и она ложна, когда оба её члена истинны или оба ложны.
В логике и математике слово «или» всегда употребляется в неисключающем значении. Разложение некоторого высказывания на простые, далее неразложимые части даёт два вида выражений, называемых собственными и несобственными символами. Особенность собственных символов в том, что они имеют какое-то содержание, даже взятые сами по себе. К ним относятся имена (обозначающие некоторые объекты), переменные (отсылающие к какой-то области объектов), высказывания (описывающие какие-то ситуации и являющиеся истинными или ложными). Несобственные символы не имеют самостоятельного содержания, но в сочетании с одним или несколькими собственными символами образуют сложные выражения, уже имеющие самостоятельное содержание. К несобственным символам относятся, в частности, логические связки, используемые для образования сложных высказываний из простых: «… и …», «… или …», «либо …, либо …», «если …, то …», «… тогда и только тогда, когда …», «ни …, ни …», «не …, а …», «…, но не …», «неверно, что …» и т.п. Само по себе слово, скажем «или», не обозначает никакого объекта. Но в совокупности с двумя собственными, обозначающими символами это слово даёт новый обозначающий символ: из двух высказываний «Письмо получено» и «Телеграмма отправлена» – новое высказывание «Письмо получено или телеграмма отправлена». Центральная задача логики – отделение правильных схем рассуждения от неправильных и систематизация первых. Логическая правильность определяется логической формой. Для её выявления нужно отвлечься от содержательных частей рассуждения (собственных символов) и сосредоточить внимание на несобственных символах, представляющих эту форму в чистом виде. Отсюда интерес формальной логики к таким, обычно не привлекающим внимания, словам, как «и», «или», «если, то» и т.п.[1]
Дата добавления: 2014-11-25; Просмотров: 912; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |