Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пневматический гайковерт




Мой микромобиль – гибрид

 

Открывая вентиль баллона, я подавал углекислоту в гайковерт, он вращал колесо, и микромобиль катился. Но теперь пневмодвигатель не замерзал, как в моем недавнем опыте с воздуховозом. Я поставил на пути газа из баллона в пневмодвигатель накопитель тепла, используя кастрюлю, и внутри поместил змеевик из металлической трубки (он был взят из выброшенного холодильника). В кастрюлю заливалась кипящая вода, а впоследствии и расплавленный парафин. Углекислый газ, проходя через змеевик, сильно нагревался и отдавал микромобилю значительно больше энергии.

Если правильно подобрать передаточное число цепной передачи от патрона гайковерта к колесу, то на таком микромобиле можно проехать около километра. Позднее я додумался применить здесь цепную «коробку скоростей» от гоночного велосипеда и несколько баллонов с углекислотой, вследствие чего длина пробега микромобиля еще больше увеличилась. Баллоны с углекислотой нужно было периодически заряжать на тех же станциях, где заряжают водители свои автомобильные огнетушители. Или покупать уже заряженные баллоны в автомагазинах. Что и говорить, дороговатым получалось катание, но зато было интересно.

 

 

 

Мой микромобиль всем очень нравился, сверстники любили на нем кататься. Каждый приходил со своим огнетушителем, а в автомагазине были рады, что залежалые баллоны хорошо распродаются. Только продавцов удивляло, что спрашивают именно углекислотные, а не другие типы огнетушителей.

У меня уже был опыт составления заявки на изобретение, и вскоре я подал ее на свой микромобиль. В ответ пришло письмо, в котором меня уведомляли о том, что моя заявка признана изобретением. Еще одно изобретение, а настоящей «капсулы» все нет…

Чтобы избавиться от дорогих баллонов с углекислотой, я решил поставить на микромобиль вместо пневмодвигателя паровую машину, которую мне обещали дать из школьного физического кабинета, а огнетушитель заменить обыкновенным паровым котлом. Правда, расчеты показали, что ни парафин, ни глауберова соль мне здесь не помогут – слишком низкая у них температура плавления. Тут вполне подошел бы гидрид лития с его 650 градусами. Однако все мои попытки достать гидрид или сходный с ним фторид лития не увенчались успехом. В хозяйственных магазинах его не было, в магазинах химреактивов мне постоянно советовали обратиться в конце месяца.

А пока я ждал очередного конца месяца, мне попалась на глаза – по‑моему, в журнале «Техника молодежи», – информация как раз об использовании тепловых накопителей на транспорте. В маленькой заметке сообщалось, что в тепловой накопитель, установленный на мотороллере с так называемым двигателем Стирлинга мощностью в 3 лошадиные силы (2,2 кВт), заливали ведро расплавленного фторида или гидрида лития, и двигатель работал 5 ч, используя накопленное тепло.

Значит, мне уже не нужно тратить время на поиски гидрида лития, тепловой накопитель с ним уже есть. Вот только что это за двигатель Стирлинга?

Так и не вспомнив, где мне попадалось это название, я обратился к энциклопедии и узнал, что принцип действия двигателя, изобретенного в 1816 году шотландским священником Робертом Стирлингом, основан на нагревании одной его части и охлаждении другой; в самом двигателе находится газ – водород или гелий – под большим давлением. Двигатель Стирлинга сейчас считают одним из самых перспективных тепловых двигателей, он работает даже от тепла человеческих рук.

Я еще раз внимательно прочитал заметку в журнале и прикинул, сколько потребовалось бы горючего для совершения той же работы. Сравнение оказалось не в пользу теплового накопителя – горючего понадобится всего около 3 кг, или чуть больше 3 л!

В чем дело? Почему столь энергоемкий накопитель, как тепловой, менее эффективен, чем бак с горючим?

Когда же я вычислил массу всего силового агрегата, необходимого для автомобиля, то есть массу двигателя Стирлинга вместе с тепловым накопителем, то понял, в чем причина столь неутешительных результатов. Дело в том, что силовой агрегат оказался почти в 300 раз тяжелее теплового накопителя!

Это происходит прежде всего потому, что двигатель Стирлинга и тем более паровая машина очень тяжелы сами по себе. Кроме того, в механическую энергию, как выяснилось, можно перевести с помощью этих машин только около трети энергии накопителя. Две трети энергии, а следовательно, и массы накопителя для нас теряются.

Так или иначе, но для прохождения 100 км пути автомобилю понадобился бы силовой агрегат массой около 3 т, что в три раза больше, чем весит сам автомобиль! Ни о какой «капсуле» здесь говорить, естественно, не приходится…

 

Кое‑что об энергии и работе

 

Как же так: механическая энергия вся без остатка переходит в тепловую, а тепло «не хочет» полностью переходить обратно в механическую энергию? Разве эти процессы не обратимы? Ответы на свои вопросы я нашел в том же учебнике физики.

Для преобразования тепла в механическую работу создан целый класс машин, называемых тепловыми двигателями. Они могут быть внутреннего сгорания, какие мы привыкли видеть на автомобилях, паровыми, Стирлинга, которые еще называются «внешнего сгорания», да мало ли еще какими, – их очень много. Во всех этих двигателях, независимо от их типа, присутствуют рабочее тело (в паровых машинах – пар, в двигателях Стирлинга и внутреннего сгорания – газ; рабочее тело бывает и жидким), нагреватель и холодильник. Поэтому распознать тепловой двигатель нетрудно. В нагревателе (топке, цилиндре и пр.) рабочее тело греют, затем «высокотемпературная» тепловая энергия переходит в «низкотемпературную», или, как говорят, «деградирует», совершая механическую работу. Деградированная часть тепловой энергии уже не может эффективно совершать работу в данных условиях, она поглощается холодильником, «выбрасывается» в окружающую среду. Такого рода потери энергии присущи любому тепловому двигателю.

Однако это еще не все. Внутренняя энергия газа или пара вообще всегда превращается в энергию движения механизмов лишь частично. Чтобы было понятнее, вспомним, как механическая энергия движущихся тел превращается в тепловую энергию. Попала, например, летящая пуля в доску, застряла в ней, при ударе вся ее кинетическая энергия перешла в тепло – энергию движения атомов и молекул. По‑другому обстоит дело, когда внутренняя энергия газа или пара превращается в механическую энергию.

Внутренняя энергия тел складывается из механической энергии атомов и молекул, находящихся в состоянии хаотического, неупорядоченного движения. Для того чтобы тепло полностью перешло в кинетическую энергию движения поршня тепловой машины, многие миллиарды хаотично мечущихся молекул должны были бы дружно подлететь к поршню и, ударившись об него, передать ему всю свою кинетическую энергию. И то всю механическую энергию они бы не передали, осталась бы еще потенциальная энергия взаимодействия молекул.

Вот почему КПД тепловых двигателей столь невелик. Французский ученый Никола Карно в 1824 году установил, что КПД любого теплового двигателя не может превышать величину, равную частному от деления разности абсолютных температур нагревателя и холодильника на абсолютную температуру нагревателя (это по Кельвину; чтобы получить то же по Цельсию, нужно прибавить 273 градуса).

Например, если пар входит в цилиндр паровой машины при температуре 200 °С, то есть 473 К, а уходит при температуре 100 °C, то есть 373 К, то КПД такой машины теоретически не может быть выше 100/373, или 21 %. А реально КПД поршневых паровых машин не более 10–15 %.

Отсюда ясно, почему накопители тепла надо использовать именно для получения тепла, а не пытаться с их помощью производить механическую работу. Все равно применение для накопителей тепла в будущем найдется. Хотя бы для обогрева салона тех же автомобилей, что будут работать на энергии до сих пор еще не найденной «капсулы».

 

Тепловая смерть и «демон Максвелла»

 

Честно говоря, невеселые мысли посетили меня в свете рассуждений об эффективности преобразования механической да и другой энергии (электрической, химической, высокотемпературной тепловой) в тепло, к тому же тепло малоценное, низкотемпературное, из которого уже невозможно извлечь ничего путного.

Что же получается? Работают сотни миллионов двигателей, электростанции, сгорает уголь, нефть, газ, вырабатывается внутриатомная энергия, и вся эта энергия в конце концов рассеивается, повышая температуру окружающей среды!

Но если повышается температура естественного «холодильника» тепловых машин, то одновременно понижается их КПД, причем всех тепловых машин сразу. Это доказал еще в XIX веке тот же ученый Карно. Постепенно температуры окружающей среды и нагревателей сравняются, КПД всех тепловых машин окажется равным нулю, и произвести работу будет уже нельзя… Существование человечества станет невозможным!

Поскольку вопрос возник «сверхсерьезный», я решил разобраться в нем подробнее. И здесь мне пришлось столкнуться с понятием энтропии, которое было предложено немецким ученым Рудольфом Клаузиусом в середине XIX века и без которого в этом вопросе никак не обойтись. Насколько я уяснил, энтропия есть некая величина, возрастание которой в необратимых процессах (например, при превращении механической энергии в тепло) характеризует ту часть энергии тел, которая уже не может совершать полезную работу и рассеивается в окружающей среде в виде тепла.

Так вот, доказав, что работа совершается только при переходе тепла от горячего тела к холодному (иначе тепло и не переходит!), и распространив свои выводы на всю вселенную, Клаузиус заявил о неминуемой «тепловой смерти» вселенной.

Конечно, энтропия – сложное понятие, оно с трудом воспринимается неподготовленным человеком, но мне помог прекрасный эмоциональный образ энтропии, энергии и их «отношений» в этом мире, найденный мною в одной старой книге: «Над всем, что совершается в беспредельном пространстве, в потоке преходящего времени властвует Энергия, как царица или богиня, озирая своим светом и былинку в поле, и гениального человека, здесь даря, там отнимая, но сохраняясь в целом количественно неизменной… Но где свет, там и тень, имя которой – Энтропия. Глядя на нее нельзя подавить в себе смутного страха – она, как злой демон, старается умалить или совсем уничтожить все то прекрасное, что создает светлый демон – Энергия. Все мы находимся под защитой Энергии, и все отданы в жертву скрытому яду Энтропии… Количество Энергии постоянно, количество же Энтропии растет, обесценивая Энергию количественно. Солнце светит, но тени становятся все длиннее. Всюду рассеяние, выравнивание, обесценивание…»

Этот отрывок весьма живо рисует ужасную картину приближения «тепловой смерти». И оказывается, до сих пор не найден механизм, защищающий вселенную от предсказанной Клаузиусом гибели. «Тепловая смерть» вселенной пугает людей, пусть даже гибель ее и должна произойти только через миллиарды лет. Даже писатель и философ Н. Г. Чернышевский высказался по этому поводу: «Формула, предвещающая конец движения во вселенной, противоречит факту существования движения в наше время. Эта формула фальшивая…

Из того факта, что конец еще не настал, очевидно, что ход процесса прерывался бесчисленное множество раз действием процесса, имеющего обратное направление, превращающего теплоту в движение…» Конечно же, Чернышевский не мог знать о Большом Взрыве, о том, что вселенная не бесконечна во времени…

Но последняя фраза Чернышевского как будто прямо призывает искать такие процессы, которые полностью превращали бы тепло в движение, иначе говоря, позволяли бы теплу переходить от менее нагретых тел к более нагретым. Что это обеспечило бы миру, ясно без слов. Мы имели бы неограниченное количество энергии, причем не боялись бы при этом повышения температуры окружающей среды – «теплового загрязнения».

Эту идею поддерживал и К. Э. Циолковский, он сам работал над полным превращением тепла в работу. Циолковский считал, что в природе существуют процессы концентрирования энергии, обратные процессам ее рассеяния. Поэтому «получается вечный круговорот материи», вечно возникающая юность вселенной. Отыскать механизмы, концентрирующие энергию, освоить их, использовать для утоления энергетического голода – вот задача, которую ставил Циолковский.

Решить такую задачу, правда, по‑своему, попытался еще в 1871 году английский ученый Джеймс Максвелл. Функции подобного механизма он приписал некому фантастическому существу, названному позже «демоном Максвелла». Это существо, утверждал ученый, обладает столь изощренными способностями, что может следить за движением и скоростью каждой отдельной молекулы. Если взять сосуд, разделенный перегородкой на две части, и посадить «демона» у дверцы перегородки, мы можем заставить его открывать дверцу и пропускать в каком‑нибудь одном направлении только быстрые молекулы, а в другом – только медленные. Тогда в одной части сосуда температура и давление окажутся выше, чем в другой, то есть мы, не совершая работы, получаем запас энергии.

«Демон Максвелла» и ныне будоражит умы. Много раз ученые убедительно доказывали, что это лишь шутка великого физика, игра воображения, не имеющая никакой реальной основы. Действительно, если бы в сосуде было всего две молекулы, то и без «демона» они в половине случаев могли оказаться в какой‑либо одной части сосуда. Если же молекул много, то вероятность их нахождения в одной части сосуда будет чрезвычайно мала. Академик А. Ф. Иоффе оценил возможность существования процессов концентрации энергии дробью, в которой после запятой идут еще 84 нуля. Вероятность получить при столкновении «жигулей» с «запорожцем» совершенно новый «мерседес» гораздо выше!

 

 




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 463; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.022 сек.