Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Введение и основные понятия




КОНСПЕКТ ЛЕКЦІЙ

 

з навчальної дисципліни

 

Опір матеріалів

 

 

Розробник: доцент ктн___________Фалько О.Т.

 

 

Шостка


содержание

Введение и основные понятия 3
Метод сечений для определения внутренних усилий 5
Эпюры внутренних усилий при растяжении-сжатии и кручении 9
Эпюры внутренних усилий при прямом изгибе 12
Понятие о напряжениях и деформациях 18
Свойства тензора напряжений. Главные напряжения 22
Плоское напряженное состояние 25
Упругость и пластичность. Закон Гука 30
Механические характеристики конструкционных материалов 36
Влияние различных факторов на механические характеристики материалов 42
Основные понятия теории надежности конструкций 45
Прочность и перемещения при центральном растяжении или сжатии 49
Расчет статически неопределимых систем по допускаемым нагрузкам 56
Учет собственного веса при растяжении и сжатии 61
Расчет гибких нитей 65
Моменты инерции относительно параллельных осей 70
Главные оси инерции и главные моменты инерции 74
Прямой чистый изгиб стержня 78
Прямой поперечный изгиб стержня 82
Составные балки и перемещения при изгибе 89
Напряжения и деформации при кручении стержней кругового поперечного сечения 92
Практические примеры расчета на сдвиг. Заклепочные соединения 98
Расчет заклепок на смятие и листов на разрыв 100
Расчет сварных соединений 104
Косой изгиб призматического стержня 110
Совместное действие изгиба и растяжения или сжатия 112
Ядро сечения при внецентренном сжатии 117
Совместные действия изгиба и кручения призматического стержня 122
Расчет балок переменного сечения 124
Расчет балки на упругом основании 127
Энергетические методы расчета деформаций 130
Теорема Кастильяно 134
Теоремы о взаимности работ и Максвелла — Мора 137
Расчет статически неопределимых балок. Способ сравнения деформаций 141
Применение вариационных методов 145
Расчет статически неопределимых стержневых систем 150
Метод сил 155
Расчет толстостенных цилиндров 161
Расчет тонкостенных сосудов и резервуаров 167
Расчет быстровращающегося диска 170
Устойчивость сжатых стержней. Формула Эйлера 174
Анализ формулы Эйлера 178
Пределы применимости формулы Эйлера 183
Прочность при циклически изменяющихся напряжениях 189
Диаграмма усталостной прочности 195
Расчет коэффициентов запаса усталостной прочности 197
Основы вибропрочности конструкций 205
Расчет динамического коэффициента при ударной нагрузке 213

Литература 219


Сопротивление материалов – наука о прочности, жесткости и надежности элементов инженерных конструкций. Методами сопротивления материалов ведутся практические расчеты и определяются необходимые, как говорят, надежные размеры деталей машин, различных конструкций и сооружений.
Основные понятия сопротивления материалов опираются на законы и теоремы общей механики и в первую очередь на законы статики, без знания которых изучение данного предмета становится практически невозможным.
В отличие от теоретической механики сопротивление материалов рассматривает задачи, где наиболее существенными являются свойства деформируемых тел, а законы движения тела, как жесткого целого, не только отступают на второй план, но в ряде случаев являются попросту несущественными.
Сопротивление материалов имеет целью создать практически приемлемые простые приемы расчета типичных, наиболее часто встречающихся элементов конструкций. Необходимость довести решение каждой практической задачи до некоторого числового результата заставляет в ряде случаев прибегать к упрощающим гипотезам – предположениям, которые оправдываются в дальнейшем путем сопоставления расчетных данных с экспериментом.
Необходимо отметить, что первые заметки о прочности упоминаются в записках известного художника ЛЕОНАРДО Де ВИНЧИ, а начало науки о сопротивлении материалов связывают с именем знаменитого физика, математика и астронома ГАЛИЛЕО ГАЛИЛЕЯ. В 1660 году Р.ГУК сформулировал закон, устанавливающий связь между нагрузкой и деформацией: «Какова сила – таково и действие». В XVIII веке необходимо отметить работы Л.ЭЙЛЕРА по устойчивости конструкций. XIX – XX века являются временем наиболее интенсивного развития науки в связи с общим бурным ростом строительства и промышленного производства при безусловно огромном вкладе ученых-механиков России.
Итак, мы будем заниматься твердыми деформированными телами с изучением их физических свойств.

Введем основные понятия, принимаемые при изучении дисциплины.

Прочность это способность конструкции выдерживать заданную нагрузку, не разрушаясь.

Жесткость – способность конструкции к деформированию в соответствие с заданным нормативным регламентом.

Деформирование – свойство конструкции изменять свои геометрические размеры и форму под действием внешних сил

Устойчивость – свойство конструкции сохранять при действии внешних сил заданную форму равновесия.

Надежность – свойство конструкции выполнять заданные функции, сохраняя свои эксплуатационные показатели в определенных нормативных пределах в течение требуемого промежутка времени.

Ресурс – допустимый срок службы изделия. Указывается в виде общего времени наработки или числа циклов нагружения конструкции.

Отказ – нарушение работоспособности конструкции.

Опираясь на вышесказанное, можно дать определение прочностной надежности.

Прочностной надежностью называется отсутствие отказов, связанных с разрушением или недопустимыми деформациями элементов конструкции.

На рис.1 приведена структура модели прочностной надежности. Она включает известные модели или ограничения, которые априорно накладываются на свойства материалов, геометрию, формы изделия, способы нагружения, а также модель разрушения. Инженерные модели сплошной среды рассматривают материал как сплошное и однородное тело, наделенное свойством однородности структуры. Модель материала наделяется свойствами упругости, пластичности и ползучести.

Рис.1. Структура модели прочностной надежности элементов конструкций

Упругостью называется свойство тела восстанавливать свою форму после снятия внешних нагрузок.

Пластичностью называется свойство тела сохранять после прекращения действия нагрузки, или частично полученную при нагружении, деформацию.

Ползучестью называется свойство тела увеличивать деформацию при постоянных внешних нагрузках.

Основными моделями формы в моделях прочностной надежности, как известно, являются: стержни, пластины, оболочки и пространственные тела (массивы), рис.2. Модели

Рис.2. Основные модели формы в моделях прочностной надежности: а) стержень, б) пластина, в) оболочка

 

нагружения содержат схематизацию внешних нагрузок по величине, характеру распределения (сосредоточенная или распределенная сила или момент), а также воздействию внешних полей и сред.

Внешние силы, действующие на элемент конструкции, подразделяются на 3 группы: 1) сосредоточенные силы, 2) распределенные силы, 3) объемные или массовые силы.

Сосредоточенные силы — силы, действующие на небольших участках поверхности детали (например давление шарика шарикоподшипника на вал, давление колеса на рельсы и т.п.)

Распределенные силы приложены значительным участкам поверхности (например давление пара в паропроводе, трубопроводе, котле, давление воздуха на крыло самолета и т.д.

Объемные или массовые силы приложены каждой частице материала (например силы тяжести, силы инерции)

После обоснованного выбора моделей формы, материала, нагружения переходят к непосредственной оценке надежности с помощью моделей разрушения. Модели разрушения представляют собой уравнения, связывающие параметры работоспособности элемента конструкции в момент разрушения с параметрами, обеспечивающими прочность. Эти уравнения (условия) называют условиями прочности. Обычно рассматриваются в зависимости от условий нагружения четыре модели разрушения:

· статического разрушения,

· длительно статического разрушения,

· малоциклового статического разрушения,

· усталостного разрушения.

При малом числе циклов (N<102) развиваются значительные пластические деформации (статическое разрушение), при большом числе циклов (N>105) пластические деформации отсутствуют (усталостное разрушение). В промежуточной области (102<N<105) разрушение носит смешанный характер (малоцикловое разрушение). Если на элемент конструкции действует высокая температура (для алюминиевых сплавов свыше 200 Co, для стальных и титановых сплавов свыше 400 Co, для жаропрочных сплавов свыше 600 Co), но в этом случае рассматривается так называемая длительная прочность материала.
Таким образом, сопротивление материалов зависит не только от величин действующего усилия, но и от длительности самого воздействия.

 




Поделиться с друзьями:


Дата добавления: 2014-11-08; Просмотров: 454; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.