Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Черт. 49. К примерам расчета 33, 34 и 39




Расчет в плоскости изгиба. Принимаем расчетную толщину полки равной средней высоте свесов f = hf = 200 + 30/2 = 215 мм.

Вычислим площадь и момент инерции бетонного сечения:

мм2;

Радиус инерции сечения мм.

Так как l 0/ i = 16 200/520 = 31,1 < 35 и l 0/ i > 14, расчет производим с учетом прогиба элемента согласно п. 3.54, принимая значение Ncr равным:

Коэффициент h определим по формуле (91):

Центр тяжести площади арматуры As и s отстоит от ближайшей грани на расстоянии а = а¢ = мм, откуда h 0 = h – a = 1500 – 79 = 1421 мм.

Значение е с учетом прогиба элемента равно:

Проверим условие (130):

т. е. расчет производим как для двутаврового сечения.

Площадь сжатых свесов полки равна:

мм2.

Определим высоту сжатой зоны:

мм.

Из табл. 18 находим xR = 0,523. Так как х = 228 мм < xR h 0 = 0,523 · 1421 = 743 мм, прочность сечения проверим из условия (131):

т. е. прочность сечения в плоскости изгиба обеспечена.

Расчет из плоскости изгиба. Определим радиус инерции сечения из плоскости изгиба:

мм4;

мм.

Так как гибкость из плоскости изгиба l 0/ i = 10 800/134 = 80 значительно превышает гибкость в плоскости изгиба l 0/ i = 31,1, согласно п. 3.51 проверим прочность сечения из плоскости изгиба, принимая эксцентриситет е 0 равным случайному эксцентриситету еа. Высота сечения при этом равна h = 600 мм.

Поскольку случайный эксцентриситет, согласно п. 3.50, еа = мм мм, принимаем еа = что при позволяет производить расчет, согласно п. 3.64, как для прямоугольного сечения, не учитывая в „запас” сечение ребра, т. е. принимая b = 2 · 215 = 430 мм.

Площадь сечения промежуточных стержней, расположенных вдоль обеих полок, равна As,int = 4826 мм2 (6 Æ 32), а площадь сечения всех стержней As,tot = 11 260 мм2 (14 Æ 32). Поскольку As,tot /3 = 11 260/3 = 3750 мм2 < As,int = 4826 мм2, в расчете используем табл. 27 (разд. Б). Из табл. 27 для тяжелого бетона при Nl/N = 2000/2500 = 0,8 и l 0/ h = 10,8/0,6 = 18 находим jsb = 0,724.

Значение Следовательно, j = jsb = 0,724.

Проверим условие (119):

т. е. прочность сечения из плоскости изгиба обеспечена.

Пример 34. Дано: размеры сечения и расположения арматуры ¾ по черт. 49; бетон тяжелый класса В30 (Rb = 19 МПа при gb 2 = 1,1; Eb = 2,9 · 104 МПа); арматура симметричная класса A-III (Rs = Rsc = 365 МПа); продольная сила N = 6000 кН; изгибающий момент М = 3100 кН·м; расчетная длина элемента: в плоскости изгиба l 0 = 16,2 м, из плоскости изгиба l 0 = 10,8 м.

Требуется определить площадь сечения арматуры.

Расчет в плоскости изгиба. Из примера 33 имеем: f = 15 мм; h 0 =1421 мм; а¢ = 79 мм; Ncr = 28 270 кН.

По формуле (91) определим коэффициент h:

Значение е с учетом прогиба элемента равно:

Проверим условие (130):

т. е. расчет производим как для двутаврового сечения.

Площадь сжатых свесов полки равна:

мм2.

Определим значения an, am 1, aov, am,ov, d:

Из табл. 18 находим xR = 0,523.

Так как x = an aov = 1,111 – 0,302 = 0,809 > xR = 0,523, площадь арматуры определим по формуле (135). Для этого по формулам (136) и (132) вычислим значения as и

Из табл. 18 находим yс = 3,0 и w = 0,698.

отсюда

Принимаем As = s = 5630 мм2 (7 Æ 32).

Расчет из плоскости изгиба производим аналогично примеру 33.

КОЛЬЦЕВЫЕ СЕЧЕНИЯ

Пример 35. Дано: сечение с внутренним радиусом r 1 = 150 мм, наружным ¾ r 2 = 250 мм; бетон тяжелый класса В25 (Rb = 16 МПа при gb 2 = 1,1); продольная арматура класса A-III (Rs = Rsc = 365 МПа); площадь ее сечения As,tot = 1470 мм2 (13 Æ 12); продольная сила от полной нагрузки N = 1200 кН, ее эксцентриситет относительно центра тяжести сечения с учетом прогиба элемента равен е 0 = 120 мм.

Требуется проверить прочность сечения.

Расчет. Вычислим площадь кольцевого сечения:

мм2

Относительная площадь сжатой зоны бетона равна:

мм.

Так как 0,15 < xcir = 0,502 < 0,6, прочность сечения проверим из условия (138):

т. е. прочность сечения обеспечена.

КРУГЛЫЕ СЕЧЕНИЯ

Пример 36. Дано: сечение диаметром D = 400 мм; а = 35 мм; бетон тяжелый класса В25 (Rb = 13 МПа при gb 2 = 0,9; Eb = 2,7 · 104 МПа); продольная арматура класса A-III (Rs =Rsc = 365 МПа; Es = 2 · 105 МПа); площадь ее сечения As,tot = 3140 мм2 (10 Æ 20); продольные силы и изгибающие моменты: от постоянных и длительных нагрузок Nl = 400 кН·м; от всех нагрузок N = 600 кН, М = 140 кН·м; расчетная длина элемента l 0 = 4 м.

Требуется проверить прочность сечения.

Расчет. Вычислим:

площадь круглого сечения мм2;

радиус инерции сечения мм;

гибкость элемента

Следовательно, расчет производим с учетом влияния прогиба элемента согласно п. 3.54, а значение Ncr определим по формуле (92). Для этого вычислим:

мм;

 

[здесь b = 1,0 (см. табл. 16)];

 

Так как 0,583 > de,min = 0,5 – 0,01 l 0/ D – 0,01 Rb, при­нимаем de = e 0/ D = 0,583.

Моменты инерции бетонного сечения и всей арматуры соответственно равны:

мм4;

 

мм4;

 

Тогда

Коэффициент h определим по формуле (91):

Прочность сечения проверим с помощью графика черт. 41.

По значениям

0,702 и на графике находим am = 0,51.

Поскольку amRbAr = 0,51 · 13 · 125 600 · 200 = 167 · 106 Н·мм = 167 кН·м > Ne h = 600 · 0,233 · 1,12 = 156,6 кН·м, прочность сечения обеспечена.

Пример 37. По данным примера 36 необходимо подобрать продольную арматуру, пользуясь графиком черт. 41.

Расчет. Из примера 36 i = 100 мм, А = 125 600 мм2, rs = 165 мм. Поскольку l 0/ i = 4000/100 40 > 35, арматуру подбираем с учетом влияния прогиба элемента, вычисляя значение Ncr по формуле (92).

В первом приближении принимаем As,tot = 0,01 A = 1256 мм2, откуда мм4.

Из примера 36 jl = 1,695, de = 0,583, I = 1256 · 106 мм4.

Тогда

 

Значение коэффициента

По значениям

находим as = 0,74, откуда мм2.

Поскольку полученное армирование существенно превышает принятое в первом приближении (As,tot = 1256 мм2), значение As,tot = 3310 мм2 определено с „запасом”, и его можно несколько уменьшить, уточнив значение Ncr.

Принимаем мм2 и производим аналогичный расчет:

мм4;

 

кН;

 

По значениям an = 0,367 и на графике черт. 41 находим as = 0,68.

мм2.

Принимаем As,tot = 3142 мм2 (10 Æ 20).

ЭЛЕМЕНТЫ, РАБОТАЮЩИЕ

НА КОСОЕ ВНЕЦЕНТРЕННОЕ СЖАТИЕ

Пример 38. Дано: прямоугольное сечение колонны размерами b = 400 мм, h = 600 мм; бетон тяжелый класса В25 (Rb = 16 МПа при gb 2= 1,1); продольная арматура класса A-III (Rs = Rsc = 365 МПа) расположена в сечении согласно черт. 50; в сечении одновременно действуют продольная сила N = 2600 кН и изгибающие моменты: в плоскости, параллельной размеру h, – Mx = 240 кН·м и в плоскости, параллельной размеру b, – My = 182,5 кН·м; моменты Мх и Мy даны с учетом прогиба колонны.

Требуется проверить прочность сечения.

 

 




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 546; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.