Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сокращенные, сложные и сложносокращенные категорические силлогизмы




 

Своеобразными видами простого категорического силлогизма выступают сокращенные, сложные и сложносокращенные силлогизмы. Структура их в целом ясна из самих их названий. Сокращенные — значит с пропуском одного из элементов пол­ного умозаключения, сложные — значит состоящие из нескольких умозаключений, определенным образом связанных между собой. Сложносокращенные совмещают в себе свойства тех и других умозаключений.

Естественно, что полными силлогизмами как в повседневной, так и научной практике люди не пользуются. Сокращение рассуждения вызвано стремлением к оптимизации мышления, его эффективности и уплотненности, насыщенности. В разговорной речи, как правило, мы сокращаем силлогизмы, например, до "Железо электропроводно, так как все металлы электропроводны", "Юпитер, ты сердишься, значит, ты не прав", или "Наше дело правое - мы победим" и т.п. Поскольку в сокращенных структурах умозаключений не так очевидными становятся те или иные нарушения норм логики, то восстановление сокращенных силлогизмов до полных и раз­ложение сложных до элементарных, простых как раз и выступают своеобразными проверочными операциями для вы­явления правильности, соответствия данных рассуждений нормативным требованиям логики. Чтобы не ошибаться в подобных умозаключениях и необходимо знать полные виды силлогизмов, поскольку обнаружить ошибку в рассуждении можно лишь зная не только структуру умозаключения, но и законы ее.

В логике выделяют четыре вида сокращенных, сложных и сложносокращенных силлогизмов, это - энтимема, эпихейрема, полисиллогизм и сорит.

Энтимема - умозаключение, в котором пропущена либо одна из посылок, либо само заключение. Таким образом, возможна энтимема с пропущенной большей посылкой, с пропущенной меньшей посылкой и с пропущенным заключением, т.е. можно выделить три вида энтимем. Но так как в простом категорическом силлогизме только три термина, то об энтимеме можно сказать и по-другому, что это умозаключение, в котором в одном случае пропущены больший и средний термины (большая посылка), в другом — меньший и средний термин (меньшая посылка), в третьем — субъект и предикат вывода (само заключение).

В виде схем эти виды энтимем можно записать так (пропущенные посылки обозначены точками):

.......... M --- P M --- P

S --- M..........S --- M

S --- P S --- P...........

 

Или содержательно: "Железо есть металл, поэтому железо электропроводное" — это энтимема с пропущенной большей посылкой. "Все металлы электропроводны, поэтому и железо электропроводно" — это энтимема с пропущенной меньшей по­сылкой. "Все металлы электропроводны, а железо — металл" — это энтимема с пропущенным выводом. Легко заметить, что все эти рассуждения соответствуют следующему полному простому категорическому силлогизму:

Все металлы - электропроводны - большая посылка

Железо есть металл - меньшая посылка

Железо - электропроводно - вывод

Для проверки правильности энтимемы важно уметь восстанавливать ее соответственно той или иной фигуре простого категорического умозаключения; проверять соблюдение правил этой фигуры и на этом основании решать, дает ли такая энтимема необходимо истинный вывод или он лишь правдоподобен. Поскольку определяющим элементом простого категорического силлогизма является средний термин, то он и будет выступать главным ориентиром в восстановлении энтимемы до полного силлогизма. В энтимеме суждение, в котором находится средний термин, будет определенно одной из посылок. Суждение, в котором нет среднего термина - вывод. В выводе же присутствует как меньший, так и больший термины и по этому показателю легко определить, какая же из посылок пропущена и по какой фигуре построено рассуждение.

Эпихейрема - умозаключение, посылками которого выступают энтимемы. Понятно, что такое умозаключение нельзя рассматривать только как сокращенное — скорее, оно сложносокращенное. Например:

Все студенты сдают экзамены, так как они - учащиеся

Этот молодой человек - студент, так как он учится на нашем факультете

Этот молодой человек сдает экзамены

В этом примере каждая из посылок является энтимемой с пропущенной большей посылкой, хотя теоретически возможны и другие случаи. Восстановим эти посылки и проверим, не нарушены ли тут требования логики к умозаключениям этого вида (пропущенные посылки выделим скобками):

(Все учащиеся сдают экзамены)

Все студенты - учащиеся

Все студенты сдают экзамены.

Это первая энтимема. Восстановим теперь вторую:

(Все учащиеся нашего факультета — студенты)

Этот молодой человек — учащийся нашего факультета

Этот молодой человек — студент.

Вывод первой и вывод второй энтимем выступают, в свою очередь, посылками для окончательного вывода эпихейремы:

Все студенты сдают экзамены

Этот молодой человек — студент

Этот молодой человек сдает экзамены

Таким образом, эпихейрему составляют не два, как может показаться на первый взгляд по числу посылок, а три отдельных силлогизма.

В виде схемы эпихейрема записывается так:

S1 есть Р, так как S1 есть М

S есть S1, так как S есть М1

S есть Р.

Сопоставление схемы и содержательного примера показывает, какой же именно элемент пропущен в эпихейреме, а восстановленные силлогизмы - что в данном случае не нарушено ни одно из правил категорического силлогизма. Связующим звеном в данной эпихейреме, средним термином между ее посылками-энтимемами выступает понятие, обозначенное символом S1. В пропущенных же посылках устанавливается связь понятий, обозначенных на схеме символами М и M1.

Полисиллогизм и сорит. Ряд силлогизмов, в которых вывод предшествующего силлогизма (просиллогизма) становится посылкой следующего силлогизма (эписиллогизма), называется полисиллогизмом. Если вывод просиллогизма становится боль­шей посылкой эписиллогизма, то полисиллогизм называется прогрессивным; если же вывод просиллогизма становится меньшей посылкой эписиллогизма, то полисиллогизм называется регрессивным. Понятно, что эписиллогизм, в свою очередь, становится просиллогизмом для следующего за ним силлогизма и т. д.

Содержательный пример прогрессивного полисиллогизма:

Все позвоночные имеют красную кровь

Все млекопитающие - позвоночные 1-й силлогизм (просиллогизм)

Все млекопитающие имеют красную кровь

Все хищники - млекопитающие 2-й силло­гизм (эписиллогизм)

Все хищники имеют красную кровь

Тигры - хищники 3-й силлогизм

Тигры имеют красную кровь.

 

Схему подобного силлогизма можно представить в следующем виде:

М --- Р

S --- M - 1-й (про) силлогизм

S --- P

B --- S - 2-й (эпи) силлогизм

B --- P

С --- B - 3-й силлогизм

C --- Р

Содержательный пример регрессивного полисиллогизма:

Все позвоночные - животные

Тигры - позвоночные - 1-й (про)силлогизм

Тигры - животные

Все животные - организмы

Тигры - животные - 2-й (эпи)силлогнзм

Тигры - организмы

Все организмы стареют

Тигры - организмы - 3-й силлогизм

Тигры стареют

Так как в регрессивном полисиллогизме вывод просиллогизма становится меньшей посылкой эписиллогизма, то его схема усложненнее, чем схема прогрессивного полисиллогизма, приходится переставлять вывод просиллогизма на место меньшей посылки эписиллогизма. Правда, схему можно значительно упростить за счет такого условия — ставить меньшую посылку на первое место, а большую посылку записывать под меньшей, тогда формульная запись будет выглядеть проще:

S есть М

M есть P - 1-й (про)силлогизм

S есть Р

Р есть B - 2-й (эпи)силлогизм

S есть В

B есть C - 3-й силлогизм

S есть C

Сокращенным полисиллогизмом является сорит. Сорит — такой полисиллогизм, в котором пропущены посылки, а точнее — промежуточные выводы, выводы просиллогизмов, становящиеся большей или меньшей посылкой следующих силлогизмов (эписиллогизмов). Соответственно этому различают два вида соритов: аристотелевский и гоклениевский.

В аристотелевском сорите пропущенными являются меньшие посылки эписиллогизмов, в гоклениевском - наоборот. Гоклениевский сорит назван по имени марбургского профессора Рудольфа Гоклена (1547—1628), обстоятельно рассмотревшего этот вид сокращенного полисиллогизма. Например:

 

Аристотелевский сорит:

Все студенты - учащиеся

Мой знакомый - студент

Все учащиеся - молодые люди

Все молодые люди - взрослеют

Мой знакомый - взрослеет

Гоклениевский сорит:

Все студенты - учащиеся

Все мои друзья - студенты

Все мои юные родственники - мои друзья

Этот спортсмен - мой юный родственник

Этот спортсмен - учащийся

Пропущенными здесь являются промежуточные выводы, они же и посылки следующих силлогизмов. В аристотелевском сорите пропущены промежуточные выводы просиллогизмов, являющиеся меньшей посылкой эписиллогизмов: "Мой знакомый - учащийся" и "Мой знакомый - молодой человек". В гоклениевском сорите пропущены выводы просиллогизмов, являющиеся большими посылками эписиллогизмов, а именно: "Все мои друзья - учащиеся" и "Все мои юные родственники - учащиеся".

Данные примеры для простоты их восприятия и анализа построены по упрощенной схеме - по модусу Barbara первой фигуры, что, естественно, не обязательно. Но в ином случае довольно сложно соблюдение силлогистических правил без их специального выделения. Правил для полисиллогизма и сорита специально не выделяют, что понятно, потому что ими являются все уже известные правила посылок для фигур и модусов. Но выделение их все же практичнее, потому что обращает внимание на руководящие признаки.

Знакомство с полисиллогизмами, а тем более с соритами, показывает сколь сложны эти мыслительные структуры и как легко допустить, особенно в соритах, ошибки. Однако, строго говоря, все научные трактаты, да и любые другие работы, должны представлять собой, по мере выделения в них главных идей и мыслей, именно подобный ряд силлогизмов, которые должны представлять собой, как выражался кот Бегемот в "Мастере и Маргарите" М.Булгакова, "вереницу прочно упакованных силлогизмов, которые оценили бы по достоинству такие знатоки, как Секст Эмпирик, Марциан Капелла, а то, чего доброго, и сам Аристотель". Подобный анализ не только научных работ, а и более простых - дело, тем не менее, не простое, но иного способа человечество пока предложить не может. Чтобы облегчить хотя бы частично подобный анализ, сформулируем правила полисиллогизмов (и соритов):

- общеутвердительный вывод возможен только тогда, когда все посылки - суждения общеутвердительные;

- если одна из посылок частное суждение, то вывод будет обязательно частным, но все остальные посылки должны быть общими;

- если одна из посылок отрицательное суждение, то вывод будет обязательно отрицательным, а все остальные посылки должны быть утвердительными;

- если первая посылка частное суждение, то только последняя может быть отрицательной;

- если первая посылка отрицательная, то только последняя может быть частной.

 

§ 6. УСЛОВНЫЕ И РАЗДЕЛИТЕЛЬНЫЕ СИЛЛОГИЗМЫ

К числу силлогистических умозаключений относят умозаключения из условных, разделительных суждений, их сочетаний с простыми категорическими суждениями и между собой. Таким образом, можно говорить об условном, разделительном, условно-категорическом, разделительно-категорическом и условно-разделительном силлогизмах (умозаключениях).

Силлогизм, в котором хотя бы одна из посылок — суждение условное, является условным силлогизмом. Когда в умозаключении обе посылки суждения условные, тогда силлогизм называется чисто условным. Когда одна из посылок — суждение условное, а другая — суждение категорическое, тогда силлогизм называется условно-категорическим. Когда же одна из посылок — суждение условное, а другая — суждение разделительное, тогда силлогизм называется условно-разделительным.

Умозаключение, в котором хотя бы одна из посылок — суждение разделительное, называется разделительным силлогизмом. Аналогично условному и здесь выделяют чисто разделительное умозаключение, когда обе посылки — разделительные суждения; разделительно-категорическое умозаключение и, наконец, разделительно-условное, которое, собственно, то же самое, что и условно-разделительное. Структуру этих умозаключений определяют входящие в них посылки, и эту структуру следует рассмотреть более обстоятельно в каждом отдельном случае.

Чисто условный силлогизм состоит из двух условных суждений, структура каждого из которых уже известна: условное суждение состоит из основания, следствия и логического союза между ними. Хотя структуру условного суждения можно представлять в субъектно-предикатной записи, например: "Если S есть Р, то S1 есть Р1", но такая запись лишь усложняет анализ, поэтому будем пользоваться сокращенной записью этих суждений, сохраняющих и даже выделяющих главные структурные элементы сложных суждений - логический союз и отдельные простые суждения. Обозначив входящие в условное суждение простые суждения отдельными символами, получим формулу условного суждения: Если В, то С. Используя символ и для логического союза, получаем еще более сокращенную запись: «В --> C»

Пользуясь этой сокращенной записью, чисто условный силлогизм можно представить такой схемой:

Если В, то С В -->С

Если С, то ДС -->Д

Если В, то Д В -->Д

Легко заметить, что роль среднего термина в чисто условном силлогизме выполняет простое суждение, являющееся в первой посылке следствием, а во второй посылке основанием этого условного суждения. Такая структура напоминает собой четвертую фигуру категорического силлогизма, однако разница существенна: там средний термин — общее для посылок понятие, здесь — общее простое суждение. Например:

Если через проводник пропустить ток, то он нагреется

Еслипроводник нагреется, то он расширится

Если через проводник пропустить ток, то проводник расширится.

Чисто условный силлогизм имеет единственный вариант своей структуры и простотой своей напоминает собой модус Barbara первой фигуры категорического силлогизма и особенно в аристотелевской манере его записи:

А сказывается обо всех Б

Б сказывается обо всех В

А сказывается обо всех В

Это не случайно, потому что данная структура отражает общую, присущую количественным (объемным), временным, пространственным, причинно-следственным и другим отношениям закономерность: величины (предметы, объемы и пр.), находящиеся в определенном отношении к третьей, находятся в том же определенном отношении и между собой.

Условно-категорический силлогизм состоит из условной (будем считать ее большей, ибо она сложное суждение) и категорической (будем называть ее меньшей, ибо она - простое суждение) посылок. Структура этого умозаключения допускает четыре разновидности, четыре ее модуса, определяемых законами связи элементов в условном суждении. Этих законов два: при истинности основания условного суждения - следствие его будет обязательно истинным, и наоборот, при ложности следствия условного суждения - основание его будет обязательно ложным. Если в условно-категорическом умозаключении от утверждения (констатации, признания истинности) основания условного суждения в меньшей ка­тегорической посылке переходит в заключении этого силлогизма к утверждению следствия условного суждения, то такой вывод правилен, он соответствует нормам логики:

Если В, то С В -->С

В В

С С

Это умозаключение представляет собой утверждающий модус (modus роnеns) условно-категорического силлогизма.

Если в условно-категорическом силлогизме мысль переходит от отрицания следствия (признания, констатации его несоответствия действительности, т.е. ложности) условного суждения в меньшей посылке, то необходимо в заключении силлогизма отрицать само основание условного суждения:

Если В, то С В -->С

не-Сне-С

Не-В не-В

Это умозаключение представляет собой отрицающий модус (modus tollеns) условно-категорического силлогизма.

Оба модуса — утверждающий и отрицающий — гарантируют необходимость и истинность вывода при истинности посылок. Два остальных модуса этого вида силлогизма не дают необходимо истинного вывода, так как их структурные особенности не соответствуют правилам, законам логики. Модусы эти называются неправильными, неправомочными, проблематичными, правдоподобными. Они дают знание, которое в одном случае (что определяется содержанием посылок) может быть ложным, в другом истинным. Формулы этих модусов записываются так:

В -->С В -->С

не-В С

(возможно, не-С) (возможно, В)

??

Чисто разделительный силлогизм составляют разделительные посылки, например:

Четырехугольники суть равносторонние или они неравносторонние

Равносторонние четырехугольники есть квадраты или ромбы

Четырехугольники есть неравносторонние, или квадраты, или ромбы

 

Символически это можно записать так:

S есть Р или S есть Р 1

Р есть Р2 или Р3

S есть Р1 или Р2 или Р3

Умозаключение, в котором на месте большей посылки — суждение разделительное, а на месте меньшей посылки — суждение категорическое, называется разделительно-категорический силлогизм. Как и условно-категорический силлогизм, разделительно-категорический тоже имеет всего два правильных модуса: утверждающе-отрицающий, или роnеndо-tоllеns, и отрицающе-утверждающий, или tоllеndо-роnеns. Например:

Деревья у нас либо лиственные, либо хвойные

Данное наше дерево - хвойное

Данное дерево - не лиственное

Другой пример:

Деревья у нас либо лиственные, либо хвойные

Данное наше дерево - не хвойное

Данное дерево - лиственное

В этих разделительно-категорических силлогизмах меньшая посылка в первом случае утвердительное суждение, а вывод отрицателен, во втором - отрицательная, но вывод положителен. Соответственно, эти модусы и называются - утверждающе-отрицающий (роnеndо-tollеns) и отрицающе-утверждающий (tollendo-ponens).

В разделительно-категорическом силлогизме можно выделить четыре их разновидности, или модуса:

В v С В v С В v С В v С

В не-В С не-С

не-С С не-В В

Однако, легко обнаружить, что здесь фактически лишь два их вида, поскольку каждый из них имеет свою пару. Поэтому, обычно и говорится, что разделительно-категорический силлогизм имеет только два правильных модуса: утверждающе-отрицающий и отрицающе-утверждающий.

В использовании условных и разделительных умозаключе­нии следует соблюдать не только требования к силлогизмам, но и все требования логики к сложным суждениям, входящим в это умозаключение. Условное суждение должно отражать естественные, причинно-следственные зависимости, ибо только в этом случае вывод по условно-категорическому силлогизму будет правильным. В случае же когда основание и следствие условного суждения не соответствуют своему структурному значению (когда их, например, поменяют местами), в силлогизме, где участвует условное суждение, вывод с необходимостью следовать не может: когда человек болен лихорадкой, то у него высокая температура, но когда у него высокая температура, это еще не значит, что он болен лихорадкой.

И в разделительном силлогизме правильность вывода будет гарантирована лишь тогда, когда в разделительной посылке будут перечислены все члены деления (деление должно быть полным), и при этом члены деления должны исключать друг друга, что следует из уже известного правила деления.

Наиболее сложным из рассматриваемых является условно-разделительный силлогизм. Он составляется из условной (будем считать ее большей) и разделительной (будем считать ее меньшей) посылок. Обычно условно-разделительные умозаключения называют лемматическими (от древнегреческого lemma - предположение). Структурно они подразделяются на дилеммы, трилеммы и полилеммы.

Дилемма — условно-разделительный силлогизм с двумя взаимоисключающими выводами, альтернативами. Смысл дилеммы заключается в необходимости выбора одного из двух возможных, как правило, взаимоисключающих друг друга решений. Различают два вида, или модуса, дилеммы: утверждающий и отрицающий. Утверждающий иначе называют конструктивной дилеммой, отрицающий модус — деструктивной дилеммой.

В конструктивной (утверждающей) дилемме условная (большая) по­сылка устанавливает два возможных основания и два вытекающих из них следствия. В разделительной (меньшей) посылке говорится о возможности только одного из двух оснований. В заключении же утверждается возможность только одного из двух следствий. Например:

Если Иванов - дисциплинированный студент, то он регулярно посещает учебные занятия; если же Иванов - недисциплинированный студент, то он часто пропускает учебные занятия.

Иванов либо дисциплинированный студент, либо недисциплинированный.

Иванов либо регулярно посещает учебные занятия, либо часто пропускает их.

В виде схемы этот модус структурно представляется более наглядно:

Если В то С; если Д, то К

Либо В, либо Д

Либо С, либо К

В логике выделяют и упрощенный вариант конструктивной дилеммы, когда в условной посылке из двух разных оснований вытекает одно и то же следствие:

Если В, то С; если Д, то С

Либо В, либо Д

С

Главная особенность этих рассуждений заключается в переходе мысли от основания к следствию условного суждения, т.е. в соблюдении того закона, который определяет структурные зависимости элементов условного суждения.

В деструктивной (отрицающей) дилемме большая условная посылка устанавливает два возможных следствия из двух оснований. В разделительной меньшей посылке отрицаются оба возможных следствия. В заключении необходимо отрицаются и сами основания:

Если В, то С; если Д, то К

Либо не-С, либо не-К

Не-В либо не-Д

В логике чаще рассматривается упрощенный вариант деструктивной дилеммы. В ней в большей условной посылке два возможных следствия устанавливаются из одного и того же основания:

Если наш товарищ — студент химического факультета, то он либо студент очного отделения, либо студент вечернего отделения.

Наш товарищ или не студент очного отделения, или не студент вечернего отделения.

Наш товарищ не студент химического факультета.

Это рассуждение вполне может соответствует действительности, поскольку специфика этой специализации не допускает возможности заочного обучения.

В деструктивной дилемме срабатывает уже другой закон структуры условного суждения, а именно: ложность следствия условного суждения необходимо влечет за собой и ложность самого основания этого суждения:

Если В, то С или Д

Не-С или не-Д

Не-В

Условно-разделительные силлогизмы еще в древности пользовались большой популярностью и им соответствовали многие исторические и курьезные случаи. Известна дилемма, с которой скифы будто бы обращались к Александру Македонскому:

Если ты бог, то благодетельствуй людям, если ты человек, то не забывай о человечности

Но ты или бог, или человек

Сл.: Ты или благодетельствуй людям, или не забывай о человечности.

А известный из истории философии случай с Эватлом, учеником Протагора, который обязался заплатить учителю за обучение после первого же выигранного им в суде дела. Эватл в судах после учебы не участвовал и Протагор, чтобы получить с ученика плату за обучение, сам обратился в суд, сказав Эватлу:

Если я выиграю дело, то ты заплатишь мне по решению суда; если же я проиграю, то ты заплатишь мне по нашему договору

Но я или выиграю дело, или проиграю его

Следовательно, в любом случае ты должен будешь заплатить мне.

Казалось бы, выхода нет. Но не зря Эватл прошел курс обучения у столь авторитетного софиста. Он нашелся ответить учителю не менее убедительной дилеммой:

Если я выиграю дело, то не заплачу тебе по решению суда; если же проиграю дело, то не заплачу по нашему договору

Но я или выиграю дело, или проиграю

Следовательно, в любом случае я не заплачу.

Трилемма — условно-разделительный силлогизм с тремя взаимоисключающими выводами-решениями. Типичный пример трилеммы — ситуация с витязем на распутье: если прямо поедешь, то голову потеряешь; если направо поедешь — коня потеряешь; если налево поедешь — женату быть. Структурные требования дилеммы так же относимы и к трилемме и поэтому на ней останавливаться нет необходимости.

Когда же в условно-разделительном умозаключении выбор предстоит из более чем трех взаимоисключающих решений (вариантов), то такое умозаключение называется полилеммой. Некоторые же и трилемму называют полилеммой, поэтому у них всего два вида лемматических умозаключений: дилемма и полилемма.

Общая схема видов дедуктивных умозаключений интересна своей наглядностью, она позволяет едином взором охватить их все:

 

Виды дедуктивных умозаключений

(силлогизмов)

 

 

простой категорический

силлогизм

 

первая вторая третья четвертая

фигура фигура фигура фигура

 

4 4 6 5

модуса модуса модусов модусов

 

условный

силлогизм

разделительный

силлогизм

чисто условно-

условный категорический

разделительно- чисто

категорический разделительный

 

сокращенные,

сложные и

сложно-сокращенные

категорические

силлогизмы

 

энтимема эпихейрема

 

полисиллогизм сорит

 

условно-разделительный

(лемматический)

 

дилемма трилемма полилемма

 

конструктивная деструктивная

 

 

Глава 5

 




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 709; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.