Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пределы применимости формулы Эйлера. Критические напряжения




Критические напряжения.

Критическое напряжение — напряжение сжатия, соответству­ющее критической силе.

Напряжение от сжимающей силы определяется по формуле

где σкр — напряжение сжатия, при котором стержень еще устойчив. Корень квадратный из отношения минимального момента инерции сечения к площади поперечного сечения принято называть мини­мальным радиусом инерции iт;п:

Тогда формула для расчета критического напряжения перепи­шется в виде

Отношение μl/i min носит название гибкости стержня λ.

Гибкость стержня — величина безразмерная, чем больше гиб­кость, тем меньше напряжение:

Заметим, что гибкость не зависит от материала, а определяется только геометрией стержня.

Формула Эйлера выполняется только в пределах упругих де­формаций.

Таким образом, критическое напряжение должно быть меньше предела упругости материала.

Предел упругости при расчетах можно заменять пределом про­порциональности. Таким образом, σ крσ уσпц, где σ у — предел упругости; σПЦ — предел пропорциональности материала;

Откуда гибкость стержня:

Предельная гибкость зависит от материала стержня.

В случае, если λ < λ пред в материале стержня возникают оста­точные деформации. Поскольку в реальных конструкциях могут воз­никать пластические деформации, не приводящие к потере работо­способности, созданы эмпирические формулы для расчетов в этих случаях.




Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 510; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.