КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Передняя камера и дренажная система 4 страница
Рис. 3.2.13. Срез стенки глазного яблока в экваториальной области: виден продольно разрезанный интрасклеральный канал, через который проходит ресничная артерия (/), окруженная слоем пигментированных меланоцитов (2). К склере с наружной стороны прилежит рыхлая волокнистая ткань — эписклера (3) Рис. 3.2.14. Внутренние слои склеры и темная пластинка склеры (lamina fusca): определяется параллельная ориентация пучков коллагеновых волокон, между которыми лежат склероциты (/). На границе с сосудистой оболочкой располагается волокнистая ткань, содержащая большое количество интенсивно пигментированных стро-мальных меланоцитов (2) хождения сосудов и нервов, как указывалось выше, является место выхода зрительного нерва. Это место расположено у заднего полюса глаза и несколько назально. Вокруг него располагаются небольшие отверстия, через которые Роговая оболочка и склера
проникают в глаз задние ресничные артерии. В горизонтальном меридиане также есть два косо расположенных отверстия, через которые проникают две длинные ресничные артерии и сопровождающие их нервы. Соответствующие вены (вортикозные), дренирующие задний отдел увеального тракта, проходят в склере в четырех задних квадрантах. Впереди, непосредственно позади лимба, передние ресничные нервы перфорируют склеру по направлению к ресничной мышце. Примерно 7 передних ресничных артерий исходят из русла 4 прямых мышц. Наружная прямая мышца глаза имеет собственную артерию. Соответствующие передние ресничные вены, количество которых, по крайней мере, 14, сопровождают каждую артерию. Коллекторные каналы из шлеммова канала перфорируют склеру в области лимба. Часть их проходит в склере, в то время как другие распространяются по поверхности лимба и видны клинически («водяные» вены). Помимо сосудов и нервов, эмиссарии в некоторых случаях содержат сильно пигментированную увеальную ткань и невусные клетки, иногда распространяющиеся и в эписклере (рис. 3.2.13). При этом пигментированная ткань видна клинически через прозрачную конъюнктиву в виде темных пятен. Эписклеральная увеальная ткань обнаруживается наиболее часто в верхнем отделе эписклеры, особенно у людей с сильно пигментированной радужкой, на расстоянии 3—4 мм от лимба. Подобная локализация пятен обусловлена тем, что пигментная ткань сопровождает передние ресничные артерии. Позади лимба в 12% случаев [1036] обнаруживаются маленькие пигментированные эпи-склеральные узелки (до 2 мм), являющиеся инт-расклеральным сплетением нервных волокон (клубок Аксенфельда). Нередко их ошибочно относят к невусам, кистам или проросшей уве-альной меланоме. Одним из наиболее важных признаков, позволяющим исключить опухолевую патологию, является подвижность конъюнктивы над пигментными пятнами. Кроме того, интрасклеральные нервные сплетения болезне-ны при надавливании на них. Внизу, темпораль-но и назально, эписклеральные пятна встречаются значительно реже. Эписклеральная пластинка (эписклера) {lamina episcleralis). Термин «эписклера» относится к тонкому содержащему сосуды слою ткани, расположенному между склерой и тено-новой капсулой (рис. 3.2.13). В гистологическом смысле она представляет собой рыхлую неоформленную соединительную ткань. Эта ткань уплотняется вблизи склеры, вблизи те-ноновой капсулы и у сухожилий наружных мышц глаза. Пучки коллагеновых волокон более тонкие, чем в склере. Значительно больше и основного вещества. Видны и эластические волокна. Эписклера плотно прикреплена к теноновой капсуле благодаря наличию многочисленных пучков коллагеновых волокон. В передних отделах она утолщена за счет более плотного сращения с теноновой капсулой и сухожилиями наружных прямых мышц глаза. Структурными компонентами эписклеры, помимо коллагеновых волокон, являются также фиброциты, стромальные меланоциты, тучные клетки и лимфоциты. Собственное вещество (строма) склеры (substantia proprla sclerae). Строма склеры складывается из косо расположенных и переплетающихся пучков коллагеновых волокон различной толщины и длины, эластических волокон, незначительного количества основного вещества, а также клеток (склероциты) (рис. 3.2.17). Эластические волокна находятся в плотном контакте с коллагеновыми волокнами и распределены неравномерно [87]. Их наибольшее количество обнаруживается в области лимба, а также в наружных и внутренних слоях. Немало их и в области решетчатой пластинки. С возрастом количество эластических волокон заметно уменьшается. Нарушение процессов образования эластических волокон, наблюдаемое при синдроме Марфана, приводит к раннему развитию стафилом.
Пучки коллагеновых волокон в зависимости от расположения (передний или задний отдел глаза, поверхностные или глубокие слои) ориентированы в различных направлениях (рис. 3.2.15, 3.2.16). Спереди поверхностные и глубокие слои коллагеновых волокон параллельны лимбу, особенно вблизи склеральной шпоры. У лимба средние и поверхностные слои коллагена формируют петли, выпуклость которых обращена кзади. Подобная ориентация становится меридианальной в местах прикрепления прямых мышц. Пучки перипапиллярного коллагена (вокруг зрительного нерва) располагаются циркулярно. Позади места прикрепления прямых мышц глаза направление коллагеновых пучков не столь четко ориентировано. верхняя нижняя назальная темпоральная задняя
которых обращена кзади кислотой гиалуроно- локон с местом"™" "УЧК°В КОл-«агенов^хТо- так™"60*66 РаспР°"Ранены в строме скп*п с местом приложения к екпрпв „ такие протеогликаны vex, 1-1роме склеры жения fin,,----- „ склере сил натя- хондРоитинсулк*1т г ' Как деРматансульфат и ых мышц нова'я кислота^ыявляюТяТ1"*" И ™yP°" а диамртп количестве. Декорин би "Значительном Роговая оболочка и склера
тельной ткани при воспалении и фиброзе [932, 1201]. Необходимо подчеркнуть, что некоторые разновидности декорина, бигликана, аггрека-на обнаруживаются не только в склере, но и в роговой оболочке [854, 855]. Выявляются они также в хрящевой ткани суставов. Эти химические компоненты обладают перекрестной иммунной реакцией. Именно этим объясняют одновременное поражение роговой оболочки (язвенный кератит), склеры (склерит) и суставов при воспалительных заболеваниях типа ревматоидного артрита. Из протеогликанов в склере обнаруживаются фибронектин, витронектин и ламинин. Фиб-ронектин играет важную роль в организации окружающего клетки межклеточного материала [1200]. Он также участвует в иммунной защите, взаимодействуя с Clg компонентом фибрина, ДНК [731]. Ламинин обеспечивает взаимодействие клеток, их перемещение и дифференциацию [577]. Между коллагеновыми волокнами лежит незначительное количество нежных эластических волокон типичного строения, диаметром 10— 12 нм [332, 554]. При этом обнаруживаются филаменты фибриллина в достаточно большом количестве. Основным клеточным элементом склеры является фиброцит (склероцит). Эти клетки располагаются между пучками коллагеновых волокон, образуя синцитий. Обладают они палочковидным ядром и длинными цитоплазмати-ческими отростками, контактирующими с отростками соседних клеток (рис. 3.2.17). Цитоплазма их бедна органоидами. Лишь в посттравматическом периоде клетки активируются и трансформируются в фибробласты, синтезирующие структурные компоненты межклеточного вещества. Помимо склероцитов, в склере встречаются меланоциты и лимфоциты. Особое место занимают сократительные клетки несосудистого происхождения. Эти клетки похожи на миофибробласты, фибробластоподобные клетки. Основным отличием их является обнаружение в цитоплазме а-актина [840]. Наибольшее их количество обнаруживается во внутренних слоях склеры, lamina fusca, а также хориоидее. К этим клеткам подходят нервные окончания, отличающиеся высокой активностью НАДФ-ди-афоразы [840]. Склероциты обладают рецепторами просто-гландинов различных подтипов [75]. Помимо склероцитов, во внутренних слоях склеры, т. е. слоях, прилежащих к сосудистой оболочке, выявляются клетки, цитоплазма которых содержит сократительные миофиламен-ты [64]. Аналогичные клетки встречаются и в сосудистой оболочке. Необходимо помнить,что с возрастом происходит уплотнение склеры. Это связано с утолщением коллагеновых и эластических волокон. Иногда на склере в старческом возрасте появляются просвечивающиеся пятна. Диаметр их до 6 мм. Располагаются они чаще в продолжение прикрепления сухожилий прямых мышц. Именно в этих местах откладываются и соли кальция. Появление желтоватого оттенка склеры связывают с отложением липидов. Склера, подобно другим плотным соединительным тканям, депонирует и холестерин. Темная пластинка склеры (lanimina fusca sclerae). Если отделить от склеры внутренние оболочки глаза, то внутренняя ее поверхность остается пигментированной. На срезах эти слои выявить более сложно. Темная пластинка является рыхлой неоформленной соединительной тканью, содержащей увеальные меланоциты (рис. 3.2.14). Склера относительно малососудистая ткань. Кровоснабжается она нежными артериальными ветвями, отходящими от ресничных артерий. Вероятно, метаболизм склеры обеспечивается и со стороны сосудистой оболочки глаза путем диффузии питательных веществ. Необходимо отметить, что этому способствует высокая проницательная способность стенок сосудов, что подтверждается в исследованиях с применением радиоактивных трейсеров и пероксидазы хрена [206, 871]. Иннервация склеры. Иннервация склеры обильная. Осуществляется она благодаря нервным волокнам, отходящим от ресничных нервов непосредственно перед их проникновением в склеральные каналы. Эти волокна обеспечивают как чувствительную, трофическую, так и вазомоторную функции. Задние ресничные нервы проникают в склеру вокруг зрительного нерва. Задние короткие ресничные нервы иннервируют заднюю часть склеры, а длинные ресничные нервы — переднюю часть. Конечные ветви длинных нервов опеспечивают иннервацию края роговой оболочки, эписклеры, трабекулярной сети и шлем-мова канала. В результате столь обильной ин-невации при воспалении склеры возникают боли. Поскольку наружные мышцы включены в ткань склеры, боли могут усиливаться при движении глаза. Регенерация склеры. После повреждения склеры, что нередко бывает при травме глазного яблока, ее регенерация бывает лишь заместительной, т. е. в месте повреждения формируется плотная неоформленная соединительная ткань [24]. Эта ткань не обладает характерными для склеры физическими особенностями, что, в первую очередь, связано с отсутствием строгой ориентации пучков коллагеновых волокон. Регенерация склеры во многом аналогична регенерации стромы роговой оболочки (см. выше). Единственным отличием является более быстрое течение процесса. Это связано с наличием большого количества кровеносных сосудов вблизи склеры, как со стороны увеального Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА
тракта, так и эписклеры. Необходимо отметить ту особенность, что при повреждении внутренних слоев склеры в регенерации участвуют соединительнотканные элементы увеального тракта, а наружных — эписклеры. 3.3. ПЕРЕДНЯЯ КАМЕРА И ДРЕНАЖНАЯ СИСТЕМА При рассечении глазного яблока четко выявляются два отдела — передний, содержащий жидкость и находящийся впереди хрусталика, и задний, располагающийся позади хрусталика и выполненный стекловидным телом. В свою очередь, передний отдел разделяется радужкой на две камеры, переднюю и заднюю. Передняя камера глаза (camera anterior bulbi) спереди ограничена внутренней поверхностью роговицы, а по периферии — трабеку-лярной сетью (рис. 3.3.1, 3.3.2). Сзади она в пределах зрачка ограничена хрусталиком и передней поверхностью радужки, а по перифе- Рис. 3.3.1. Структурные образования переднего угла глазного яблока и границы лимбальной области: А — конъюнктива в области лимба; Б — влагалище глазного яблока (тенонова капсула); В — слой эписклеры; Г — склера области лимба; / — конъюнктивальные сосуды; 2 — эписклераль-ные сосуды; 3 — глубокие склеральные сосуды; 4 — склеральная шпора; 5 — ресничная мышца; 6 — просвет канала Шлем-ма; 7— трабекулярная сеть; 8 — отростки радужной оболочки, переходящие в трабекулы; 9 — место прерывания боуменовой оболочки; 10 — место прерывания десцеметовой оболочки Рис. 3.3.2. Соответствие гониоскопической картины особенностям микроскопического строения структур угла передней камеры (по Fine, Yanoff, 1972): 1 — шлеммов канал; 2 — роговица; 3 — линия Швальбе; 4 — трабекулярная сеть; 5 — склеральная шпора; 6 — рецессия угла; 7— зрачок; 8 — передняя поверхность радужки; 9 — склера рии — передней поверхностью ресничного тела. Передняя и задняя границы передней камеры глаза встречаются в углу дренажной системы. Передняя камера сообщается через зрачок с задней камерой глаза. Объем передней камеры примерно равен 220 мкл, и средняя глубина — 3,15 мм (2,6— 4,4 мм). Диаметр передней камеры колеблется от 11,3 до 12,4 мм [1103]. Глубина камеры может быть различной, что хорошо выявляется при использовании гонио-скопии. Когда угол между задней поверхностью роговой оболочки и передней поверхностью радужки менее 20°, камеру называют узкой. При этом высока вероятность контакта радужки с трабекулярной сетью, приводящего к блокаде дренажной системы. Отмечено, что глубина камеры уменьшается на 0,01 мм в год. В гиперметропическом глазу это уменьшение выражено в большей степени, чем в близоруком (камера углубляется на 0,06 мм для каждой диоптрии в близоруком глазном яблоке) [48, 158, 542, 543, 1154— 1156]. Отмечается изменение глубины камеры и при аккомодации. Это связано с увеличением кривизны передней поверхности хрусталика и его смещением кпереди [154, 158]. Переходя к описанию строения системы оттока камерной влаги, необходимо первоначально остановиться на структурах, образующих дренажную систему (рис. 3.3.1, 3.3.2). Край (лимб) роговицы (limbus corneae) представляет собой переходную зону шириной приблизительно 1,5 мм. Располагается эта зона между роговой оболочкой и склерой. Границей лимба является линия, соединяющая конец боуменовой оболочки и места прерывания десцеметовой мембраны. По периферии корнеоскле-ральное соединение отграничено параллельной линией, проходящей через склеральную шпору. Лимб можно разделить на три слоя в зависимости от глубины расположения структур.
Это «глубокие слои», в состав которых входят шлеммов канал и трабекулярная сеть; «средние слои», состоящие из «корнеоскле-ральной стромы», в которой располагается также интрасклеральное венозное сплетение. В состав «поверхностных слоев» входят эпи-склера, тенонова капсула, строма и эпителий конъюнктивы. Существует еще ряд подходов в определении понятия лимба. Патологоанатомы считают задней границей лимба линию, проходящую в 1,5 мм от места прерывания боуменова слоя. «Хирургический» лимб имеет ширину 2 мм и может быть разделен на две зоны: переднюю светло-серую зону, надлежащую над прозрачной роговой оболочкой и распространяющуюся от боуменовой оболочки до линии Швальбе, и заднюю белую зону, надлежащую над трабе-кулярным аппаратом и распространяющуюся от линии Швальбе до склеральной шпоры или корня радужной оболочки. Эти ориентиры необходимо знать при экстракции катаракты и проведении антиглаукоматозных операций. 3.3.1. Клиническая анатомия передней камеры В норме угол передней камеры глаза не виден, поскольку наблюдается полное внутреннее отражение идущего от угла света передней поверхностью роговой оболочки. Специальные оптические системы (гониоскопы прямые и непрямые) позволяют увидеть угол передней камеры, что широко и используется в клинической практике. При помощи гониоскопа клинически можно увидеть ряд ориентиров, характеризующих структурные особенности угла (рис. 3.3.1—3.3.4). Рис. 3.3.3. Меридианальный срез корнеосклеральной области: / — наружная склеральная борозда; 2 — внутренняя склеральная борозда; 3 — склеральная шпора Рис. 3.3.4. Топография образований угла передней камеры (а) и их микроскопическое строение (б): I — венозный синус склеры (шлеммов канал); 2 — юкстаканали-кулярная сеть; 3 — задняя пограничная пластинка (десцеметова мембрана); 4 — корнеосклеральная часть трабекулярной сеточки; 5 — увеальная часть трабекулярной сеточки; 6 — склеральная шпора; 7 — корень радужной оболочки Ресничная связка, являющаяся наиболее задней отметкой угла и представляющая собой темную полосу, соответствующую передней поверхности ресничного тела, и места прикрепления ресничной мышцы к склеральной шпоре. Склеральная шпора выглядит тонкой светлой узкой полосой, расположенной между поверхностью ресничного тела и пигментированной зоной трабекулярной сети. Эта полоса очерчивает заднюю границу корнеосклеральной части трабекулярной сети. Трабекулярная сеточка при гониоскопии располагается кпереди от склеральной шпоры и представляет собой широкую (750 мкм) полосу, довольно трудно различимую в слабо пигментированном глазе. Распространяется она от склеральной шпоры к кольцу Швальбе. Трабекулярная сеть прикрывает внутреннюю часть шлеммова канала. Венозный синус склеры (шлеммов канал) (sinus venosus sclerae Schlemm) можно увидеть при гониоскопии только тогда, когда происходит ретроградный заброс в него крови (ре-флюкс). При этом канал выглядит розовой полосой, просвечивающей через трабекулы. Ретро- Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА
градный заброс крови возможен при гониоско-пии, поскольку при наложении на поверхность глаза гониоскопа затрудняется эписклеральный венозный дренаж и изменяется направление кровотока [164]. Пограничное кольцо (линия) Швальбе представляет собой переднюю границу дренажного угла. Она выглядит как нежная зубчатая линия, расположенная в месте прерывания мембраны Десцемета. Примерно у 15—20% людей эта линия может быть значительно утолщенной и проецироваться в виде тонкого блестящего гребня в переднюю камеру (задний эмб-риотоксон). Кольцо Швальбе иногда слегка пигментировано. «Углубление» угла (recess). Верхушка угла передней камеры глаза находится в плоскости, расположенной позади на 0,6—1,0 мм наиболее передней точки капсулы хрусталика. Поэтому радужка изгибается назад, образуя «углубление» угла передней камеры. Ширина этого «углубления» зависит от размера глаза, глубины передней камеры, состояния зрачка и других факторов. Таким образом, при помощи гониоскопии можно определить состояние ряда образований — трабекулярной сети, радужной оболочки, ресничного тела, задней поверхности роговой оболочки, склеральной шпоры, зрачка. Учет состояния этих образований имеет большое значение в диагностике глаукомы. Немаловажно и определение ширины угла передней камеры. При этом анализируют наличие и состояние перечисленных выше световых рефлексов, видимых при гониоскопии. Передняя камера глаза содержит структуры, обеспечивающие дренаж камерной влаги. Большая часть влаги оттекает через трабеку-лярную сеть в шлеммов канал, а затем в инт-ра- и эписклеральные венозные сосуды. Появление препятствия на этом пути оттока приводит к повышению внутриглазного давления, состоянию, называемому глаукомой. В тех случаях, когда передняя камера мелкая, повышение внутриглазного давления возможно при смещении корня радужки вперед. При этом происходит блокада угла. Подобное состояние называется первичной закрытоуголь-ной глаукомой. При другой форме глаукомы, так называемой первичной открытоугольной глаукоме, отток камерной влаги затруднен в связи с появлением препятствия оттоку влаги на уровне трабекулярной сети и шлеммова канала. В этом угол остается открытым.
Дата добавления: 2014-11-18; Просмотров: 790; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |