КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Нейтронный метод
Нейтронный каротаж применяют в необсаженных и обсаженных скважинах. Нейтронный метод основан на облучении скважины и пород нейтронами от стационарного ампульного источника и измерении плотностей потоков надтепловых и тепловых нейтронов и гамма-квантов, образующихся в результате ядерных реакций рассеяния и захвата нейтронов. Измеряемая величина – скорость счета в импульсах в минуту (имп/мин); расчетная величина – водородосодержание пород, %. В зависимости от регистрируемого излучения различают: - нейтронный каротаж по надтепловым нейтронам – ННК-НТ; - нейтронный каротаж по тепловым нейтронам – ННК-Т; - нейтронный гамма-каротаж – НГК. Первые два вида исследований выполняют, как правило, с помощью компенсированных измерительных зондов, содержащих два детектора нейтронов (рис. 4); НГК – однозондовыми или двухзондовыми приборами, содержащими источник нейтронов и один или два детектора гамма-излучения (рис. 2). Нейтроны не имеют электрического заряда, не ионизируют среду и, следовательно, не теряют энергии при взаимодействии с электрическими зарядами электронов и ядер. Этим объясняется их высокая проникающая способность. Нейтрон – частица с массовым числом, равным единице, и с зарядом, равным нулю (). Различают быстрые нейтроны с энергией 1 – 15 МэВ, промежуточные – 1 МэВ – 10 эВ, медленные или надтепловые – 10 – 0,1 эВ и тепловые нейтроны со средней скоростью 0,025 эВ. Единственный фактор, влияющий на движение нейтронов – их столкновение с ядрами атомов, которое проявляется в виде рассеяния нейтронов и захвата их ядрами атомов. В результате рассеяния происходят уменьшение энергии нейтронов и изменение направления его движения. Различают неупругое и упругое рассеяние нейтронов. В случае неупругого рассеяния при столкновении нейтрона с ядром атома большая часть кинетической энергии расходуется на возбуждение рассеивающего ядра, что сопровождается значительным снижением энергии (скорости движения) нейтронов. Неупругое рассеяние характерно для быстрых нейтронов. При энергиях нейтронов от нескольких МэВ до 0,1 эВ преобладает упругое рассеяние, играющее основную роль в процессе замедления нейтронов. Упругое рассеяние вызывает перераспределение кинетической энергии между нейтроном и ядром (часть энергии нейтрона передается ядру), отклонение движения нейтрона от первоначального направления и снижение его энергии. Чем меньше масса ядра, тем больше потеря энергии нейтрона. Наибольшая потеря энергии происходит при столкновении нейтрона с ядром атома водорода, масса которого почти равна массе нейтрона. Потеря энергии нейтроном в этом случае может быть полной. В результате рассеяния быстрых нейтронов, испускаемых источником, происходит их замедление и превращение в надтепловые и тепловые, т. е. в конечном счете энергия нейтронов становится равной кинетической энергии атомов и молекул. Такие нейтроны участвуют в тепловом движении атомов и молекул, сталкиваются с ними, не теряя и не приобретая энергии. Этот процесс получил название диффузии нейтронов. В горной породе замедляющая способность нейтронов определяется содержанием водорода в единице ее объема (водородосодержанием, ω). Интенсивность замедления быстрых нейтронов наименьшая в карбонатах и наибольшая в галоидах. Одним из основных нейтронных параметров среды является длина замедления нейтронов Ls. Длиной замедления называют среднее расстояние по прямой линии от места вылета нейтрона до точки, в которой нейтрон становится тепловым. Величина Ls зависит от водородосодержания и при содержании воды и нефти в порах породы изменяется от 15 до 35 см, а в воде составляет несколько сантиметров. Количественное содержание водорода в породах влияет на длину замедления а, следовательно, и время жизни нейтронов. Нейтроны, достигшие теплового состояния, продолжают двигаться (диффундировать) из областей большей плотности в области пониженной плотности, испытывая столкновения с ядрами элементов без изменения средней энергии и длины звеньев между отдельными столкновениями. В результате происходит поглощение (захват) нейтрона ядром атома. Коэффициент диффузии обратно пропорционален содержанию водорода в среде. Чем больше водонасыщенность среды, тем медленнее «расползается» облако тепловых нейтронов (диффузия происходит в течение 102–104 мкс). Для диффузионной фазы движения тепловых нейтронов характерны величины La –среднее расстояние от точки возникновения теплового нейтрона до точки его поглощения и τср – среднее время жизни нейтрона: τср = 1 / υт Σз, (1) где υт – скорость движения тепловых нейтронов, с увеличением температуры скорость возрастает; Σз – эффективное макроскопическое сечение захвата нейтронов, выражающее способность среды поглощать нейтроны. Зависимости времени жизни нейтронов (τ) в геологических образованиях от содержания алюмокремниевых компонентов и водорода при различной концентрации хлора, обладающего большим сечением поглощения приведены на рисунке 1. Рис. 1. Зависимости времени жизни нейтронов в геологических образованиях от содержания алюмокремниевых компонентов и водорода при различной концентрации хлора
Захват медленного нейтрона сопровождается испусканием g-квантов (радиационный захват), являющимся основной причиной вторичного гамма-излучения. Возникают g-лучи захвата в водородсодержащей среде в результате реакции: . (2) При захвате нейтронов в ядре создается некоторый избыток энергии, и оно приходит в возбужденное состояние. Переход в устойчивое состояние сопровождается испусканием g-квантов, число и энергия которых зависит от того, какому элементу (и какому его изотопу) соответствует ядро. С удалением от источника плотность нейтронов (число нейтронов в единице объема) в среде уменьшается, и одновременно возрастает число нейтронов с меньшей энергией. Плотность нейтронов зависит от замедляющих и поглощающих свойств среды, которые определяются, в основном, водородосодержанием. Следовательно, чем выше водородосодержание, тем быстрее убывает плотность нейтронов с удалением от источника.
Дата добавления: 2014-11-18; Просмотров: 1952; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |