Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ценность концепции лимитирующих факторов состоит в том, что она позволяет разобраться в сложных взаимосвя­зях в экосистемах




Закон толерантности В. Шелфорда формулируетсятак: рости развитие организмов зависят, в первую оче­редь, оттех факторов среды, значения которых при­ближаются к экологическому минимуму или экологи­ческому максимуму.

Закон минимума Либиха в общем виде можно сформу­лировать так: рост и развитие организмов зависят, в пер­вую очередь, от тех факторов природной среды, значе­ние которых приближается к экологическому минимуму.

Эврибионты обычно широко распространены. Стеноби-онты имеют ограниченный ареал распространения.

Исторически, приспосабливаясь к экологическим факторам, животные, растения, микроорганизмы распределяются по раз­личным средам, формируя все многообразие экосистем, обра­зующих биосферу Земли.

5.3. Лимитирующие Представление о лимитирующих факторах факторы основывается на двух законах экологии: законе минимума и законе толерантности. Закон минимума. В середине прошлого века немецкий химик Ю. Либих (1840), изучая влияние питательных веществ на рост растений, обнаружил, что урожай зависит не от тех эле­ментов питания, которые требуются в больших количествах и присутствуют в изобилии (например, С02 и Н20), а от тех, которые, хотя и нужны растению в меньших количествах, но практически отсутствуют в почве или недоступны (например, фосфор, цинк, бор). Эту закономерность Либих сформулиро-вал так: «Рост растения зависит от того элемента питания, который присутствует в минимальном количестве». Позднее этот вывод стал известен как закон минимума Либиха и был распространен на многие другие экологические факторы. Ог­раничивать, или лимитировать развитие организмов могут и теп­ло, и свет, и вода, и кислород, и другие факторы, если их значение соответствует экологическому минимуму. Например, тропическая рыба морской ангел погибает, если температура воды опустится ниже 16 °С. А развитие водорослей в глубоко­водных экосистемах лимитируется глубиной проникновения сол­нечного света: в придонных слоях водорослей нет.


Глава 5. Экологические факторы

Исследования показали, что закон минимума имеет два ограни­чения, которые следует учитывать при практическом применении.

Первое ограничение состоит в том, что закон Либиха строго применим лишь в условиях стационарного состояния системы. Например, в некотором водоеме рост водорослей ограничивает­ся в естественных условиях недостатком фосфатов. Соединения азота при этом содержатся в воде в избытке. Если в этот водоем начнут сбрасывать сточные воды с высоким содержанием мине­рального фосфора, то водоем может «зацвести». Этот процесс будет прогрессировать до тех пор, пока один из элементов не израсходуется до ограничительного минимума. Теперь это может быть азот, если фосфор продолжает поступать. В переходный же момент (когда азота еще достаточно, а фосфора уже дос­таточно) эффекта минимума не наблюдается, т. е. ни один из этих элементов не влияет на росу водорослей.

Второе ограничение связано с взаимодействием нескольких факторов. Иногда организм способен заменить дефицитный эле­мент другим, химически близким. Так, в местах, где много стронция, в раковинах моллюсков он может заменять кальций при недостатке последнего. Или, например, потребность в цин­ке у некоторых растений снижается, если они растут в тени. Следовательно, низкая концентрация цинка меньше будет лими­тировать рост растений в тени, чем на ярком свету. В этих случаях лимитирующее действие даже недостаточного количества того или иного элемента может не проявляться.

Закон толерантности (лат. tolerantia - терпение) был открыт

английским биологом В. Шелфордом (1913), который обратил внимание на то, что ограничивать развитие живых организмов могут не только те экологические факторы, значения которых минимальны, но и те, которые характеризуются экологическим максимумом. Избыток тепла, света, воды и даже питательных веществ может оказаться столь же губительным, как и их недо­статок. Диапазон экологического фактора между минимумом и максимумом В. Шелфорд назвал пределом толерантности.


Глава 5. Экологические факторы

Предел толерантности описывает амплитуду колебаний факто­ров, которая обеспечивает наиболее полноценное существова­ние популяции (рис 5.14). Отдельные особи могут иметь не­сколько иные диапазоны толерантности. Данная конкретная рыба, возможно, выдерживает более высокие или более низкие темпе­ратуры или количества ядовитых веществ. Рис. 5.14 отражает реакцию всей популяции на изменение температуры.

Рис. 5.14. Предел толерантности популяции (по Миллеру, 1990)

Позднее были установлены пределы толерантности относи­тельно различных экологических факторов для многих растений и животных. Законы Ю. Либиха и В. Шелфорда помогли понять многие явления и распределение организмов в природе. Орга­низмы не могут быть распространены повсюду потому, что попу­ляции имеют определенный предел толерантности по отношению к колебаниям экологических факторов окружающей среды.


Глава 5. Экологи'вские факторы

Было установлено следующее:

- организмы с широким диапазоном толерантности ко всем факторам широко распространены в природе и место бывают космополитами, например, многие патогенные бактэрии;

- организмы могут иметь широкий диапазон толеэантности в отношении одного фактора и узкий диапазон относительно дру­гого. Например, люди более выносливы к отсутствию пищи, чем к отсутствию воды, т. е. предел толерантности относстельно воды более узкий, чем относительно пищи;

- если условия по одному из экологических факюров стано­вятся неоптимальными, то может измениться и предел толерантно­сти по другим факторам. Например, при недостагке азота в почве злакам требуется гораздо больше воды;

- наблюдаемые в природе реальные пределы толерантности меньше потенциальных возможностей организма адаптироваться к данному фактору. Это объясняется тем, что в природе преде­лы толерантности по отношению к физическим условиям среды могут сужаться биотическими отношениями: конкуренция, отсут­ствие опылителей, хищники и др. Любой человек лучше реализу­ет свои потенциальные возможности в благоприятных условиях (сборы спортсменов для специальных тренировок перед ответ­ственными соревнованиями, например). Потенциальная эколо­гическая пластичность организма, определенная в лсбораторных условиях, больше реализованных возможностей в естественных условиях. Соответственно различают потенциальную и реализо­ванную экологические ниши;

- пределы толерантности у размножающихся особей и потом­ства меньше, чем у взрослых особей, т. е. самки в период размножения и их потомство менее выносливы, чем взрослые организмы. Так, географическое распределение промысловых птиц чаще определяется влиянием климата на яйца и птенцов, а не на взрослых птиц. Забота о потомстве и бережное отношение к материнству продиктованы законами природы. К сожалению, иногда социальные «достижения» противоречат этим законам;


Глава 5. Экологические факторы

- экстремальные (стрессовые) значения одного из факторов ведут к снижению предела толерантности по другим факторам. Если в реку сбрасывается нагретая вода, то рыбы и другие орга­низмы тратят почти всю свою энергию на преодоление стресса. Им не хватает энергии на добывание пищи, защиту от хищников, раз­множение, что приводит к постепенному вымиранию. Психологи­ческий стресс также может вызывать многие соматические (гр. soma - тело) заболевания не только у человека, но и у некоторых животных (например, у собак). При стрессовых значениях фактора адапта­ция к нему становится все более и более «дорогостоящей».

Многие организмы способны менять толерантность к отдельным факторам, если условия меняются постепенно. Можно, например, привыкнуть к высокой температуре воды в ванне, если залезть в теплую воду, а потом постепенно добавлять горячую. Такая адапта­ция к медленному изменению фактора - полезное защитное свой­ство. Но оно может оказаться и опасным. Неожиданное, без предупреждающих сигналов, даже небольшое изменение может оказаться критическим. Наступает пороговый аффект: «после­дняя капля» может оказаться фатальной. Например, тонкая веточка может привести к перелому уже перегруженной спины верблюда. Если значение хотя бы одного из экологических факто­ров приближается к минимуму или максимуму, существо­вание и процветание организма, популяции или сообще­ства становится зависимым именно от этого, лимитирую­щего жизнедеятельность фактора.

Лимитирующим фактором называется любой экологичес­кий фактор, приближающийся к крайним значениям пределов толерантности или превышающий их. Такие сильно отклоняющие­ся от оптимума факторы приобретают первостепенное значение в жизни организмов и биологических систем. Именно они контроли­руют условия существования.


Глава 5. Экологические факторы

К счастью, не все возможные экологические факторы регули­руют взаимоотношения между средой, организмами и челове­ком. Приоритетными в тот или иной отрезок времени оказывают­ся различные лимитирующие факторы. На этих факторах эко­лог и должен сосредоточить свое внимание при изучении экоси­стем и управлении ими. Например, содержание кислорода в наземных местообитаниях велико, и он настолько доступен, что практически никогда не служит лимитирующим фактором (за исключением больших высот и антропогенных систем). Кислород мало интересует экологов, занимающихся наземными экосисте­мами. А в воде он нередко является фактором, лимитирующим развитие живых организмов («заморы» рыб, например). Поэтому гидробиолог всегда измеряет содержание кислорода в воде, в отличие от ветеринара или орнитолога, хотя для наземных орга­низмов кислород не менее важен, чем для водных.

Лимитирующие факторы определяют и географический аре­ал вида. Так, продвижение организмов на север лимитируется, как правило, недостатком тепла. Биотические факторы также часто ограничивают распространение тех или иных организмов. Например, завезенный из Средиземноморья в Калифорнию ин­жир не плодоносил там до тех пор, пока не догадались завезти туда и определенный вид осы - единственного опылителя этого растения. Выявление лимитирующих факторов очень важно для многих видов деятельности, особенно сельского хозяйства. При целенаправленном воздействии на лимитирующие условия можно быстро и эффективно повышать урожайность растений и произ­водительность животных. Так, при разведении пшеницы на кислых почках никакие агрономические мероприятия не дадут эффекта, если не применять известкование, которое снизит ограничивающее действие кислот. Или, если выращивать кукурузу на почвах с очень низким содержанием фосфора, то даже при достаточном количестве воды, азота, калия и других питательных веществ она перестает расти. Фосфор в данном случае - лими­тирующий фактор. И только фосфорные удобрения могут спа­сти урожай. Растения могут погибнуть и от слишком большого



Глава 5. Экологические факторы

количества воды или избытка удобрений, которые в данном слу­чае тоже являются лимитирующими факторами.

Знание лимитирующих факторов дает ключ к управле­нию экосистемами. Однако в разные периоды жизни организма и в разных ситуациях в качестве лимитирующих выступают различ­ные факторы. Поэтому только умелое регулирование условий су­ществования может дать эффективные результаты управления.

5.4. Взаимодействие и компенсация факторов. В природе экологические факторы действуют не независимо друг от друга – они взаимодействуют. Анализ влияния одно­го фактора на организм или сообщество не самоцель, а способ оценки сравнительной значимости раз­личных условий, действующих совместно в реальных экосистемах.

Совместное влияние факторов можно рассмотреть на примере зависимости смертности личинок крабов от температу­ры, солености и присутствия кадмия (рис. 5.15). При отсутствии кадмия экологический оптимум (минимальная смертность) наблю­дается в интервале температур от 20 до 28 °С и солености - от 24 до 34 %о. Если в воду добавляется токсичный для ракообраз­ных кадмий, то экологический оптимум смещается: температура лежит в интервале от 13 до 26 °С, а соленость - от 25 до 29 %0. Изменяются и пределы толерантности. Разница между эколо­гическим максимумом и минимумом для солености после добав­ки кадмия уменьшается с 11 - 47 %о до 14-40 %о. Предел толерантности для температурного фактора, наоборот, расши­ряется с 9 - 38 °С до 0 - 42 °С.

Температура и влажность - самые важные климатические факторы в наземных местообитаниях. Взаимодействие этих двух факторов, по существу, формирует два основных типа климата: морской и континентальный. Водоемы смягчают климат суши, так как вода обладает высокими удельной теплотой плавления и теплоем­костью. Поэтому морскому климату свойственны менее резкие колебания температуры и влажности, чем континентальному.

 

Глава 5. Экологические факторы


Рис 5 15. Влияние температуры, солености и кадмия на смертность личинок крабов

Воздействие температуры и влажности на организмы также зависит от соотношения их абсолютных значений. Так, темпера­тура оказывает более выраженное лимитирующее влияние, если влажность очень велика или очень мала. Каждому известно, что высокие и низкие температуры переносятся хуже при высокой влажности, чем при умеренной.

Взаимосвязь температуры и влажности как основных климатичес­ких факторов часто изображают в виде графиков - климограмм, позволяющих наглядно сравнивать различные годы и районы и

 

Рис. 5.1. Хищничество
193


Глава 5. Экологические факторы

прогнозировать продукцию растений или животных для тех или иных климатических условий.

Организмы не являются рабами среды. Они приспосабливаются к условиям существования и изменяют их, т. е. компенсируют отрицательное воздействие экологических факторов.

Компенсация экологических факторов - это стремле­ние организмов ослабить лимитирующее действие физических, биотических и антропогенных влияний. Компенсация факторов возможна на уровне организма и вида, но наиболее эффектив­на на уровне сообщества.

При разных температурах один и тот же вид, имеющий широкое географическое распространение, может приобре­тать физиологические и морфологические (rp. morphe - форма, очер­тание) особенности, адаптированные к местным условиям. Напри­мер, у животных уши, хвосты, лапы тем короче, а тело тем массивнее, чем холоднее климат.

Эта закономерность называется правилом Аллена (1877), со­гласно которому выступающие части тела теплокровных животных увеличиваются по мере продвижения с севера на юг, что связано с адаптацией к поддержанию постоянной температуры тела в различ­ных климатических условиях. Так, у лисиц, живущих в Сахаре, длинные конечности и огромные уши; европейская лисица более приземиста, уши у нее намного короче; а у арктической лисицы -песца - очень маленькие ушки и короткая морда (рис. 5.16).

Рис. 5.16. Изменчивость размера ушей и морды у лисиц: 1 - африканская лисица; 2 - европейская лисица; 3 - песец

 


Глава 5. Экологические факторы

V животных с хорошо развитой моторной активностью компенса­ция факторов возможна благодаря адаптивному поведению. Так, ящерицы не боятся резких охлаждений, потому что днем они выходят на солнце, а ночью прячутся под нагретые камни. Возни­кающие в процессе адаптации изменения часто генетически закреп­ляются. На уровне сообщества компенсация факторов может осуществляться сменой видов по градиенту условий среды; напри­мер, при сезонных изменениях происходит закономерная смена видов растений.

Естественную периодичность изменений экологических факторов организмы используют также для распределения функций во времени. Они «программируют» жизненные циклы таким обра­зом, чтобы максимально использовать благоприятные условия.

Наиболее ярким примером является поведение организмов в зависимости от длины дня - фотопериода. Амплитуда длины дня возрастает сгеографической широтой, что позволяет организ­мам учитывать не только время года, но и широту местности. Фотопериод - это «реле времени», или пусковой механизм последо­вательности физиологических процессов. Он определяет цвете­ние растений, линьку, миграцию и размножение у птиц и млеко­питающих и т. д. Фотопериод связан с биологическими часа­ми и служит универсальным механизмом регулирования функций во времени. Биологические часы связывают ритмы экологических факторов с физиологическими ритмами, позволяя организмам приспосабливаться к суточной, сезонной, приливно-отливной и другой динамике факторов.

Изменяя фотопериод, можно вызывать и изменения функций организма. Так, цветоводы, изменяя световой режим в теплицах, получают внесезонное цветение растений. Если после декабря сразу увеличить длину дня, то это может вызвать явления, проис­ходящие весной: цветение растений, линьку у животных и т. д. V многих высших организмов адаптации к фотопериоду закреп­ляются генетически, т. е. биологические часы могут работать и при отсутствии закономерной суточной или сезонной динамики.


Глава 5. Экологические факторы




Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 503; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.027 сек.