КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методы и средства предварительного и экспертного исследования вещественных доказательств
В экспертных и предварительных исследованиях вещественных доказательств помимо общенаучных методов используются и специальные, которые, исходя из принципа общности, можно в свою очередь подразделить на общеэкспертные, используемые в большинстве классов судебных экспертиз и исследований, и частноэкспертные. Система общеэкспертных методов исследования вещественных доказательств включает: методы анализа изображений; методы морфологического анализа; методы анализа состава; методы анализа структуры; методы изучения физических, химических и других свойств. Методы анализа изображений используются для исследования традиционных криминалистических объектов — следов человека, орудий и инструментов, транспортных средств, а также документов, кино-, фото- и видеоматериалов и пр.1 Под морфологией понимают внешнее строение объекта, а также форму, размеры и взаимное расположение (топографию) образующих его структурных элементов (частей целого, включений, деформаций, дефектов и т. п.) на поверхности и в объеме, возникающих при изготовлении, существовании и взаимодействии объекта. Наиболее распространенными методами морфологического анализа являются методы наблюдения и исследования с помощью оптического микроскопа — оптическая микроскопия. Среди микроскопических методов, используемых при исследовании вещественных доказательств, выделяют метод светлого поля в проходящем свете — используется для исследования прозрачных объектов с включениями. Пучок света, проходя через непоглощающие зоны препарата, дает равномерно освещенное поле. Включение на пути пучка частично поглощает его, частично рассеивает, вследствие чего изучаемая частица выглядит темным пятном на светлом фоне. Для наблюдения прозрачных не поглощающих свет объектов, невидимых при методе светлого поля, используют метод темного поля в проходящем свете. Изображение создается светом, рассеянным элементами структуры препарата, который отличается от среды показателем преломления. В поле зрения микроскопа на темном фоне видны светлые изображения деталей. Наиболее часто методы светлого и темного поля используются в экспертном исследовании ювелирных камней и объектов биологической природы. Микроскопические исследования в проходящем свете осуществляются с помощью биологических микроскопов (типа МБИ и МБР). Для наблюдения непрозрачных объектов применяют метод светлого поля в отраженном свете. Свет на объект падает под углом, и морфология Эти методы подробно будут освещены в следующих главах. 138 Глава 10. Концепция криминалистической техники объекта видна вследствие различной отражательной способности его элементов. Используется для изучения широкого круга вещественных доказательств: изделий из металлов и сплавов, лакокрасочных покрытий, волокон, документов, следов-отображений и пр. Поляризационная микроскопия используется для исследования анизотропных объектов в поляризованном свете (проходящем и отраженном), например минералов, металлических шлифов, биологических объектов. Люминесцентная (флуоресцентная) микроскопия использует явление люминесценции. Объект освещается излучением, возбуждающим люминесценцию. При этом наблюдается контрастная цветная картина свечения, позволяющая выявить морфологические и химические особенности объектов. Ультрафиолетовая и инфракрасная микроскопия позволяет проводить исследования за пределами видимой области спектра. Ультрафиолетовая микроскопия (250—400 нм) применяется для исследования биологических объектов (например, следы крови, спермы), инфракрасная (0,75—1,2 мкм) дает возможность изучать внутреннюю структуру объектов, непрозрачных в видимом свете (кристаллы, минералы, некоторые стекла, следы выстрела, залитые, заклеенные тексты). Стереоскопическая микроскопия позволяет видеть предмет объемным за счет рассматривания его двумя глазами (оптическая система включает два окуляра). Большинство микроскопов, используемых для изучения вещественных доказательств, являются стереоскопическими. Бинокулярные стереоскопические микроскопы (типа МБС) применимы для исследования практически всех видов объектов (следы человека и животных, документы, лакокрасочные покрытия, металлы и сплавы, волокна, минералы, пули и гильзы и т. д.) как в проходящем, так и в отраженном свете. Как правило, они снабжены насадкой для фотографирования (рис. 10.6). Ими в основном оснащены экспертные учреждения. Сравнительные микроскопы (типа МИС, МС, МКС) имеют спаренную оптическую систему, что позволяет производить одновременное исследование двух объектов. Совмещенное изображение выявленных признаков можно сразу же сфотографировать с помощью специальной микрофотона-садки. Микроскопы специальные криминалистические типа МСК позволяют наблюдать изображение не только с помощью окуляра, но и на специальном экране. В настоящее время на вооружение в экспертно-кримина-листические учреждения берутся сравнительные микроскопы, снабженные телекамерами и управляемые персональными компьютерами, позволяющие получать комбинированное изображение сравниваемых объектов на телеэкране (телевизионная микроскопия), исследовать объекты в поляризованном свете, со светофильтрами, в инфракрасных или ультрафиолетовых лучах. Они дают возможность электронным путем изменять масштаб, контрастность и яркость изображения. Возможности морфологических исследований резко расширились с появлением электронной микроскопии. Просвечивающая электронная микроскопия основана на рассеянии электронов без изменения энергии при прохождении их через вещество или материал. Такие приборы используют для изучения деталей микроструктуры объектов, находящихся за пределами разрешающей способности оптического микроскопа (мельче 0,1 мкм). Он позволяет исследовать объекты — вещественные доказательства в виде: тонких срезов (например, волокон или лакокрасочных покрытий для исследования особенностей морфологии их поверхности); суспензий, напри- Рис. 10.6. Микроскоп биологический мер горюче-смазочных материалов. Микроскопы просвечивающего типа имеют разрешающую способность в несколько ангстрем1. Растровая электронная микроскопия (РЭМ) основана на облучении изучаемого объекта хорошо сфокусированным (с помощью специальной линзовой системы) электронным пучком предельно малого сечения (зонд), обеспечивающим достаточно большую интенсивность ответного сигнала (вторичных электронов) от того участка объекта, на который попадает пучок. Разного рода сигналы представляют информацию об особенностях соответствующего участка объекта. Размер участка определяется сечением зонда (от 1—2 до десятков ангстрем). Чтобы получить информацию о достаточно большой области, дающей представление о морфологии объекта, зонд заставляют обегать (сканировать) заданную площадь по определенной программе. РЭМ, позволяющая повысить глубину резкости почти в 300 раз по сравнению с обычным оптическим микроскопом и достигать увеличения до 200 тыс. крат, широко используется в экспертной практике для микротрасологических исследований, изучения морфологических признаков самых разнообразных микрочастиц: металлов, лакокрасочных покры- 1 ангстрем — 10-8 см. Глава 10. Концепция криминалистической техники тий, волос, волокон, почвы, минералов. Многие растровые электронные микроскопы снабжены так называемыми микрозондами — приставками, позволяющими проводить рентгеноспектральный анализ элементного состава изучаемой микрочастицы. Рассмотрим далее методы анализа состава, структуры и свойств веществ и материалов, наиболее часто используемых в практике. Методы элементного анализа используются для установления элементного состава, т. е. качественного или количественного содержания определенных химических элементов (таблицы Менделеева) в данном веществе или материале. Круг их достаточно широк, однако наиболее распространенными в экспертной практике являются следующие. Эмиссионный спектральный анализ — с помощью источника ионизации вещество пробы переводится в парообразное состояние и возбуждается спектр излучения этих паров. Проходя далее через входную щель специального прибора — спектрографа, излучение с помощью призмы или дифракционной решетки разлагается на отдельные спектральные линии, которые затем регистрируются на фотопластинке или с помощью детектора. Качественный эмиссионный спектральный анализ основан на установлении наличия или отсутствия в полученном спектре аналитических линий искомых элементов, количественный — на измерении интенсивности спектральных линий, которые пропорциональны концентрациям элементов в пробе. Широко используется для исследования взрывчатых веществ, металлов и сплавов, нефтепродуктов и горюче-смазочных материалов, лаков и красок и др. Лазерный микроспектральный анализ основан на поглощении веществом сфокусированного лазерного излучения, благодаря высокой интенсивности которого начинается испарение вещества мишени и образуется облако паров — факел, служащий объектом исследования. За счет повышения температуры и других процессов происходит возбуждение и ионизация атомов факела с образованием плазмы, которая является источником анализируемого света. Фокусируя лазерное излучение, можно производить спектральный анализ микроколичеств вещества, локализованных в малых объемах (до 10 10 см3), и устанавливать качественный и количественный элементный состав самых разнообразных объектов практически без их разрушения. Рентгеноспектральный анализ. Проходя через вещество, рентгеновское излучение поглощается, что приводит атомы вещества в возбужденное состояние. Возврат к исходному состоянию сопровождается спектральным рентгеновским излучением. По наличию спектральных линий различных элементов можно определить качественный, а по их интенсивности — количественный состав вещества. Это один из наиболее удобных методов элементного анализа, который на качественном и часто полуколичественном уровне является практически неразрушающим, только в редких случаях при исследовании ряда объектов, как правило, органической природы, могут произойти видоизменения их отдельных свойств. Используется для исследования широкого круга объектов: металлов и сплавов, частиц почвы, лакокрасочных покрытий, материалов документов, следов выстрела и пр. (рис. 10.7, 10.8). Атомно-абсорбционный анализ — метод, основанный на поглощении излучения свободными атомами. Через слой атомных паров пробы, получаемых с помощью атомизатора (обычно это пламя или трубчатая печь), про- пускают излучение в диапазоне 190—850 нм. Поглощая кванты света, атомы переходят в возбужденные энергетические состояния. Этим переходам в атомных спектрах соответствуют так называемые резонансные линии, характерные для данного элемента. Концентрация того или иного элемента определяется исходя из соотношения интенсивности излучения до и после прохождения через поглощающий слой. Для установления связи между поглощающей способностью и концентрацией вещества в атомизатор вводят несколько стандартных образцов с известным содержанием элемента и строят калибровочный график. Метод используется для количественного элементного анализа и характеризуется очень высокой чувствительностью, быстротой, простотой пробоподготовки, однако малопригоден для обзорного анализа пробы неизвестного состава. Под молекулярным составом объекта понимают качественное (количественное) содержание в нем простых и сложных химических веществ, для установления которого используются методы молекулярного анализа. Это прежде всего химико-аналитические методы, которые традиционно применяются в криминалистике уже десятки лет, например капельный анализ — химические реакции, проводимые с капельными количествами растворов анализируемого вещества и реагента. Успех применения метода во многом зависит от правильного выбора и применения контрастных цветных реакций. Используют для проведения в основном предварительных исследований ядовитых, наркотических и сильнодействующих, взрывчатых и других веществ. Для этого метода созданы наборы, учитывающие работу с определенными видами следов: «Капля», «Капилляр» и др. Другим весьма распространенным методом является микрокристаллоскопия — метод качественного химического анализа по образующимся (при действии соответствующих реактивов на исследуемый раствор) характерным кристаллическим осадкам. Используется при исследовании следов травления в документах, фармацевтических препаратов, ядовитых и сильнодействующих веществ и пр. Однако основными методами исследования молекулярного состава вещественных доказательств являются в настоящее время молекулярная спектроскопия и хроматография. Молекулярная спектроскопия (спектрофо-тометрия) — метод, позволяющий изучать качественный и количественный молекулярный состав веществ, основанный на изучении спектров поглощения, испускания и отражения электромагнитных волн, а также спектров люминесценции в диапазоне длин волн от ультрафиолетового до инфракрасного излучения. Включает: инфракрасную спектроскопию — один из наиболее информативных методов, позволяющий исследовать молекулярный состав и природу исследуемых веществ. Основан на поглощении молекулами вещества ИК-излучения, что переводит их в возбужденное состояние. ИК-спектры поглощения регистрируют с помощью спектрофотометров. Используется для установления состава нефтепродуктов, лакокрасочных покрытий (связующего), пар-фюмерно-косметических товаров и пр. (рис. 10.9); спектроскопию в видимой и ультрафиолетовой областях спектра, которая основана на поглощении электромагнитного излучения соединениями, содержащими хромофорные (определяющие окраску вещества) и ауксохром-ные (не определяющие поглощения, но усиливающие его интенсивность) группы. По спектрам поглощения судят о качественном составе и структуре молекул. Количественный (спектрофотометрический) анализ основан на: переводе вещества, если оно бесцветно, в поглощающее световой поток окрашенное соединение с помощью определенных реактивов; измерении оптической плотности с помощью специального прибора — фотометра. Рис. 10.10. Хроматограф Оптическая плотность при одинаковой толщине слоя тем больше, чем выше концентрация вещества в растворе. По электронным спектрам устанавливают, например, состав примесей и изменения, происходящие в объекте под воздействием окружающей среды. Хроматография используется для анализа сложных смесей веществ. Она основана на различном распределении компонентов между двумя фазами — неподвижной и подвижной (элюентом). В зависимости от агрегатного состояния элюента различают газовую или жидкостную хроматографию. В газовой хроматографии в качестве подвижной фазы используется газ. Если неподвижной фазой является твердое тело (адсорбент), хроматография называется газоадсорбционной, а если жидкость, нанесенная на неподвижный носитель, — газожидкостной. В жидкостной хроматографии в качестве подвижной фазы используется жидкость. Аналогично газовой различают жидкостно-адсорбционную и жидкостно-жидкостную хроматографию. Хро-матографическое разделение проводят в трубках, заполненных сорбентом (колоночная хроматография), в капиллярах длиной в несколько десятков метров (капиллярная хроматография), на пластинках, покрытых слоем адсорбента (тонкослойная хроматография), на бумаге (бумажная хроматография). Методы хроматографии используются при исследовании широкого круга объектов судебных экспертиз, например чернил и паст шариковых ручек, наркотических препаратов, пищевых продуктов и напитков, взрывчатых веществ, красителей, горюче-смазочных материалов и многих других (рис. 10.10). Под фазовым составом понимают качественное или количественное содержание определенных фаз в данном объекте. Фаза — это гомогенная часть гетерогенной системы, причем в данной химической системе фазы могут иметь одинаковый (а-железо и у-железо в охотничьем ноже) и различный (закись и окись меди на медном проводе) химический состав. Фазовый состав всех объектов, имеющих кристаллическую структуру, устанавливается с помощью рентгенофазового анализа, который успешно приме- Глава 10. Концепция криминалистической техники няется в экспертной практике для неразрушающего исследования самого широкого круга объектов: металлов и сплавов, строительных, лакокрасочных материалов, фармацевтических препаратов, парфюмерно-косметиче-ских изделий, взрывчатых веществ и др. Метод основан на неповторимости расположения атомов и ионов в кристаллических структурах веществ, которая отражается в соответствующих рентгенометрических данных. Анализ этих данных и позволяет устанавливать качественный и количественный фазовый состав. Часто фазовый состав одновременно дает представление и о структуре объектов. Металлографический и рентгеноструктурный анализы используются для изучения кристаллической структуры объектов. С помощью металлографического анализа изучаются изменения макро- и микроструктуры металлов и сплавов в связи с изменением их химического состава и условий обработки. Рентгеноструктурный анализ позволяет определять ориентацию и размеры кристаллов, их атомное и ионное строение, измерять внутреннее напряжение, изучать превращения, происшедшие в материалах под воздействием давления, температуры, влажности, и на основании полученных данных судить о «биографии» той или иной детали, по разрушениям определять причины пожара, взрыва или автодорожного происшествия. Методы исследования отдельных свойств объектов могут быть самыми разнообразными. При исследовании вещественных доказательств анализируется, например, электропроводность объектов (электропроводов или обугленных остатков древесины при определении очага пожара), магнитная проницаемость (для диагностики изменения маркировки), микротвердость (для исследования следов газокислородной резки, сварных швов и шлаков при установлении механизма вскрытия металлических хранилищ), концентрационные пределы вспышки и воспламенения, температура воспламенения и самовоспламенения и многое другое. ■ Глава 11. Основы криминалистического учения о фиксации доказательственной информации § 1. Понятие фиксации доказательственной информации Фиксация доказательственной информации1 — одна из важнейших в комплексе проблем, связанных с изучением и использованием закономерностей собирания доказательств — базовой стадии процесса доказывания. В употреблении термина, обозначающего понятие фиксации, имеются различия. В процессуальной литературе чаще говорят о «закреплении доказательств», об их «процессуальном оформлении». В криминалистической литературе акцент делается на указании объектов фиксации — преимущественно материальных образований, а также на средствах и методах фиксации. Это понятие и рассматривается чаще всего применительно к конкретному виду объектов фиксации. Формулирование понятия фиксации доказательств требует его анализа. С гносеологической точки зрения зафиксировать доказательство — значит дать максимально полное представление о нем, адекватно передать те его свойства и признаки, которые, собственно, и делают его доказательством. Полнота этого процесса зависит от его условий и средств отражения, а также от тех целей, которые преследует субъект отражения. Поэтому при фиксации оно носит избирательный характер: отражается только то и в таком объеме, что представляется необходимым для данного субъекта. Поскольку доказательства — это отражения преступления в окружающей среде, результат их фиксации будет отражением отражения, т. е., если можно так выразиться, производным отражением. В информационном аспекте речь идет о переносе информации с одного объекта (доказательства) на другой — материальное средство фиксации. Информационная сущность фиксации доказательств заключается в том, что: а) производятся перекодировка доказательственной информации, со б) обеспечивается сохранение доказательственной информации для не в) обеспечивается возможность накопления информации до пределов, 1 Говоря о фиксации доказательственной информации, мы имеем в виду и фиксацию источников доказательств как ее материальных носителей, «хранилищ». По ходу изложения мы пользуемся обоими терминами, в каждом конкретном случае выбирая тот из них, который более соответствует аспекту рассмотрения вопроса или традиционному словоупотреблению. Глава 11. Основы учения о фиксации информации г) получает свое материальное выражение отбор информации о собы относящаяся к предмету доказывания (относимая информация), допускаемая законом (допустимая информация), существенная с точки зрения предмета доказывания; д) запечатлевается не только сама доказательственная информация, но и В процессуальном плане фиксация доказательственной информации есть выражение удостоверительной деятельности субъекта доказывания. В науке уголовного процесса неоднократно отмечалось, что доказывание — это одновременно и познавательная, и удостоверительная деятельность. Но, помимо удостоверения фактов, фиксация доказательств преследует цель их запечатлеть. Причем на первый план здесь выступает процессуальная форма удостоверения и запечатления, поэтому данное определение в известном смысле можно считать формальным. Отсюда и распространенное среди процессуалистов представление о фиксации доказательств как об их оформлении в установленном законом порядке, т. е. придании им законной формы. В отличие от процессуального криминалистический аспект понятия фиксации доказательств носит содержательный характер. Здесь делается упор на действия по фиксации доказательств и средства этой фиксации. Анализ содержания понятия фиксации доказательств в уголовном судопроизводстве позволяет сделать вывод, что его определение должно содержать не только объекты и средства фиксации, но и указание на процессуальный характер этой деятельности (на оформление фиксации в установленном законом порядке). С учетом этого можно определить фиксацию доказательств как систему действий по запечатлению в установленных законом формах сведений, имеющих значение для правильного разрешения уголовного дела, а также условий, средств и способов их обнаружения и закрепления. Из этого определения следует, что: 1) фиксация доказательств — это в известном смысле физическая деятельность, система действий, а не чисто мыслительная процедура запоминания каких-то фактов, явлений, процессов; 2) объектом фиксации являются не всякие сведения, а лишь те, «на основе которых суд, прокурор, следователь, дознаватель в порядке, определенном настоящим Кодексом, устанавливает наличие или отсутствие обстоятельств, подлежащих доказыванию при производстве по уголовному делу, а также иных обстоятельств, имеющих значение для уголовного дела» (ст. 74 УПК РФ); 3) эта деятельность направлена на запечатление объекта фиксации в определенных (процессуальных) формах. Следовательно, не всякая форма запечатления удовлетворяет требованиям фиксации доказательств (отвечает этому понятию), а только установленная уголовно-процессуальным законом; 4) в понятие фиксации доказательств входит не только запечатление самих сведений, но и действия по их обнаружению, ибо допустимость доказательств зависит от допустимости их источников, средств и способов обнаружения. Для суждения же об их допустимости необходима соответст- § 2. Формы, методы и средства фиксации вующая информация, запечатление которой и осуществляется при фиксации доказательств; 5) наконец, поскольку фиксация доказательств есть облечение фактиче Из сказанного можно заключить, что объектами запечатления при фиксации доказательств являются: а) сами сведения; 6) действия по их обнаружению и фиксации; в) условия их обнаружения и фиксации; г) средства и способы обнаружения и фиксации сведений и остальных Следует также отметить, что процессуальная форма требует указания и субъектов фиксации. Доказательственная информация и данные о ее получении и запечатле-нии — это основные объекты фиксации в процессе доказывания. Однако наряду с этой основной используется и информация дополнительная, играющая существенную роль в установлении истины по делу. Во-первых, ориентирующая информация, полученная оперативно-розыскным путем (органами дознания), а также в результате организационно-технических и розыскных действий следователя либо его консультаций со специалистами. Во-вторых, вспомогательная информация, которая служит целям идентификации и розыска и содержится преимущественно в образцах для сравнительного исследования. Фиксация ориентирующей информации заключается в ее запечатле-нии — в порядке и формах, установленных Законом об ОРД и подзаконными ведомственными актами. Что касается вспомогательной информации, то фиксируются порядок и способы ее получения, характеристика объекта — ее носителя, а в последующем — ее содержание в сопоставлении с доказательственной информацией и результаты такого сопоставления.
Дата добавления: 2014-11-18; Просмотров: 890; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |