Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Предел и непрерывность функции двух переменных

 

Для функции двух (и большего числа) переменных вводится понятие предела функции и непрерывность, аналогично случаю функции одной переменной.

Пусть функция определена в некоторой окрестности точки , кроме, может быть, самой этой точки.

Определение 1.3. Число называется пределом функции при и (или, что то же самое, при ® ), если для любого существует такое, что для всех и , и удовлетворяющих неравенству выполняется неравенство . Записывают:

или

.

Из определения следует, что если предел существует, то он не зависит от пути, по которому стремится к (число таких направлений бесконечно). Определения бесконечно малых и бесконечно больших величин являющихся функциями двух переменных, аналогичны соответствующим определениям для функций одной переменной.

Предел функции двух переменных обладает свойствами, аналогичными свойствам предела функции одной переменной.

 

Определение 1.4. Функция (или ) называется непрерывной в точке , если она:

1) определена в этой точке и некоторой ее окрестности;

2) имеет предел ;

3) этот предел равен значению функции в точке , т.е.

или .

Функция, непрерывная в каждой точке некоторой области, называется непрерывной в этой области. Точки, в которых непрерывность нарушается (не выполняется хотя бы одно из условий непрерывности функции в точке), называются точками разрыва этой функции. Точки разрыва могут образовывать целые линии разрыва. Так, например, функция имеет линю разрыва .

Можно дать другое, равносильное приведенному выше, определение непрерывности функции в точке. Обозначим , . Значит, и . Величины и называются приращениями аргументов и . Тогда . Величина называется полным приращением функции в точке .

Определение 1.5. Функция называется непрерывной в точке , если полное приращение функции в этой точке стремится к нулю, когда приращения ее аргументов и стремится к нулю, т.е.

.

Пользуясь определением непрерывности и теоремами о пределах, можно доказать, что арифметические операции над непрерывными функциями и построение сложной функции из непрерывных функций приводит к непрерывным функциям – подобные теоремы имели для функций одной переменной.

 

<== предыдущая лекция | следующая лекция ==>
 | 
Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 324; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.